
7AAI15 511 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO-CETC F/S 1/3
DESIGN 0F ADVANCED DIGITAL FLIGHT CONTROL SYSTEMS VIA COMNAND G-ETC(U)

UNLASSIFIED AFIT/#E/EE-81-0-VOL-2*u//hhhhuh/hu
Ell~llElllllEE
EIIIIIIIIEEIIE
IEIIEEIIEIIEI
EIIIIIIEEEEEEE
EEEIIIEEEEEIIE.
EIIIIEIIEIIII



OFTI

ELECTE%ADEPARTMENT OF THE AIR FORCE SJN 0
AIR UNIVERSITY (ATC) Fm

AIR FORCE INSTITUTE OF TECHNOLOGV-

Wright-Patterson Air Force Base, Ohio

ZS'da 82mm 06 14 19
.........................



AFIT/GE/EE-81-20

oii

DESIGN OF ADVANCED DIGITAL
FLIGHT CONTROL SYSTEMS VIA
COMMAND GENERATOR TRACKER
(CGT) SYNTHESIS METHODS

THESIS VOLUME II

AFIT/GE/EE-81-20- Richard M. Floyd
t', -;. Capt USAF

Approved for public release; distribution unlimited



AFIT/GE/EE/81-20

DESIGN OF ADVANCED DIGITAL FLIGHT CONTROL SYSTEMS

VIA COMMAND GENERATOR TRACKER (CGT)

SYNTHESIS METHODS

THESIS VOLUME III

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the Accession For

Requirements for the Degree of NTISCR;&I
DTiC TAB
UnannOuncesd

Master of Science Justificri,

By-

by Availability CodeSby Avail and/or

Richard M. Floyd, B.S. 
DiSt Specal

Capt USAF

Graduate Electrical Engineering Copy

December 1981 12

Approved for public release; distribution unlimited



Contents

Page

List of Figures......................vi

*A. CGTPIF Programmer's Guide...............1

A.1 Introduction. .................. 1
A.2 Program Structure .............. 2
A.3 Segmentation. .................. 5
A.4 Use of Library Routines...........6
A.5 Array Storage ................ 7
A.6 Common Blocks................12

A.6.1 LIBRARY Commons. ............ 12
A.6.2 General Commons. ............ 12
A.6.3 Temporary Storage Commons.......13
A.6.4 Computational Element Commons . 13

A.6.4.1 Set A: Establish Dynamics
FModel.......................14

pA.6.4.2 Set B: Controller Setup -14
A.6.4.3 Set C: Design PI Regu-

lator.............15
A.6.4.4 Set D: Design CGT or

CGT/PI....................15
A.6.4.5 Set F: Design Kalman

Filter. .......... 15
A.7 Dynamics Models...............15

A.7.1 Design Model ............ 16
A.7.2 Truth Model. .............. 18
A.7.3 Command Model. ........... 19

A.8 File Usage ................. 21
A.8.1 SAVE File ................. 21
A.8.2 DATA File ............... 21
A.8.3 LIST File ............... 22
A.8.4 PLOT File ................. 22

A.9 Description of Routine 'MAIN' ........ 22
A.10 Optional Routines: Define Dynamics Models. 28

A.10.1 Design Model. ............. 29
A.10.2 Truth Model .............. 30
A.10.3 Command Model ............. 30

A.11 CGTPIF SUBS.................31
A.11.1 CGTXQ................31
A.11.2 SETUP........... ...... 35

A.11.2.1 SDN...... .......36
A.11.2.2 SCMD. ............ 40
A.11.2.3 STRTH ............ 42



Page

A.11. 3 PimTX..................43
A.11.4 SREGPI .................. 44
A.11.5 SCGT ................... 50
A.11.6 CEVAL ......... ... .... 54
A.11.7 FLTRK..................62
A.11.8 FEVAL. ........ ... .... 63
A.11.9 Utility Routines. ......... 68

A.12 LIBRARY Routines ................. 84
A.13 Array Starting Addresses. ........... 86

B. CGTPIF User's Guide..................90
B.1 Introduction ................... 90
B.2 Preparation Prior to Program Execution 91

B.2.1 Determine Dynamics Models . . .. 91
B.2.2 Define Objectives and Specifica-

tions................92
B.2.3 Determine Appropriate Initial

Quadratic Weights .......... 92
B.3 Definition of the Dynamics Models . . . . 94

B.3.1 Design Model. ............. 94
B.3.2 Truth Model ............ 97
B.3.3 Command Model ............. 98

B.4 File Usage ...................... 99
B.4.1 SAVE and DATA Files ........... 99
B.4.2 LIST File ............... 101
B.4.3 PLOT File.............101

B.5 CGTPIF Execution ................ 102
B.5.1 Overview ................ 102
B.5.2 Types of Entries ............ 104

B.5.2.1 Decision Logic. ..... 104
B.5.2.2 Single Entry. ...... 105
B.5.2.3 Multiple Entry ...... 105

B.5.3 Establishing Dynamics Models
("A") ................. 107

B.5.4 Controller Setup ("B").........113
B.5.5 PI Design ("C")..........113
B.5.6 CGT Design ("D") ............ 116
B.5.7 Controller Evaluation ("E") . .119

B.5.8 Kalman Filter Design ("F") .. 127
B.5.9 Filter Evaluation ("G").......129

B.6 Program Messages. ............. 132VB.6.1 Memory Allocation. .......... 132
B.6.2 Dimensional Errors ............133
B.6.3 Computational Problems .. ..... 135

B.7 Running CGTPIF. .............. 138

iv



Page

C. CGTPIF Input/Output Listing. ...... . . . 139

C.1 CGTPIF Terminal I/O Listing . . . . . . 140
C.1.1 Introduction. ............ 140
C.1.2 Summary of Input/Output . . .. 140

C.2 CGTPIF Output to LIST File. ........ 163

D. CGTPIF Program Listing. ............ 167

E. CGTPIF Segmentation Job Control .......... 234

Bibliography ....................... 237

Iv



List of Figures

Figure Page

A-1. CGTPIF General Structure ............ 4

A-2. Partitioned Matrix M...............9

A-3. Column 1 of M within V. ............. 11

A-4. CGTXQ Flowchart. ................ 33

A-5. SCMD Entry Logic ................ 41

A-6a. CEVAL Flowchart..................56

A-6b. VOUTIC Flowchart ................ 57

A-6c. CTRESP Flowchart ................ 58

B-1. CGTPIF General Flowchart ........... 103

B-2a. Dynamics Model Entry (Executive) .. ...... 108

*B-2b. Enter Dynamics Model from Terminal ....... 109

B-2c. Modify/List Model Arrays ........... 109

B-3. PI Regulator Design ............... 114

B-4. CGT Controller Design. ............ 118

B-5. Controller Evaluation. ............ 120

B-6. Kalman Filter Design ............. 128

B-7. Filter Evaluation ................ 130

vi



Appendix A

CGTPIF Programmer's Guide

A.1 k Introduction
GTPIF is a controller design program which exe-

cutes interactively. Three design paths are offered:

(1) design of a Proportional-plus-Integral (PI) regulator

via linear-quadratic (LQ) methodology; (2) design of a

Command Generator Tracker, either open-loop (CGT) or

closed-loop (CGT/PI); and (3) design of a Kalman filter

(KF). These three designs are components of a final con-

troller implemented as a Command Generator Tracker, with an

inner-loop proportional-plus-integral regulator, and a

Kalman filter for state estimation (CGT/PI/KF). For each

design path there is a corresponding set of routines to

evaluate the quality of the design achieved.

The program is written in FORTRAN IV and consists

of about 2500 lines of source code. In addition, numerous

routines are employed from a library of matrix routines

described in Reference 24. Since the resulting program is

large both in code and in memory utilization for array

storage, direct and complete loading of the program exceeds

memory limits for interactive execution on the ASD CYBER

computer system. A technique referred to as "segmentation"

£ i . .. . . .=1
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is employed to provide selective loading of routines dur-

ing execution so that memory usage remains within the

limits for interactive execution.

This guide first discusses various general aspects

of the program relevant to a programmer wishing to under-

stand the code and wishing to obtain an executable object

file. Later sections discuss the specific execution paths

and the computations performed by each routine.

A.2 Program Structure

All of CGTPIF's execution logic and computations

are embodied in a large set of routines which require no

modification in order to apply the program to various dif-

ferent specific design problems. These invariant routines

are referred to here collectively as CGTPIF SUBS. Among

these routines, a single subroutine, CGTXQ, serves as the

overall executive for program execution.

Additional routines comprising CGTPIF are the main

program routine (MAIN) and various optional user-provided

routines. MAIN simply defines temporary file names, allo-

cates total array storage, then calls CGTXQ. CGTXQ then

determines all execution options and calls the appropriate

routines of CGTPIF SUBS. The optional routines are called

from within the CGTPIF SUBS routines (at the user's dis-

cretion), and if not specifically needed for the design of

interest may be omitted (i.e., the user need not provide

"dummy" subroutines). IF CGTPIF is directed by the user to

2



call such optional routines but which the user has not pro-

vided, dummy routines within CGTPIF SUBS are called. These

dummy routines allow the call to be completed and signal

CGTPIF that functional routines do not exist in the object

file. Thus execution of the program is not affected if the

user directs execution of optional routines that he has not

implemented.

The available executable object file for CGTPIF

provides specific array allocations and can handle systems

with states and other vector variables dimensioned in the

range of 10-20, approximately (the specific dimensionali-

ties are given in a later section). In many cases the

available CGTPIF will be directly applicable to a variety

of different problems without modification. However, if

the memory allocation is to be changed and/or if any of the

optional routines are to be implemented, then these will

require compilation. The CGTPIF SUBS routines would require

no modification under these circumstances.

The general structure of CGTPIF is shown in

Figure A-1. The blocks emanating from CGTXQ comprise the

primary computational components of the program. At any

given instant during program execution, the routines

actually loaded in memory are MAIN, subroutine CGTXQ, and

the subroutines associated with a single computational

block called by CGTXQ. In addition, certain routines

utilized by several different computational blocks are

loaded in conjunction with CGTXQ.

3
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'MAIN'

I

' CGTXQ'

A Establish Dynamics Model

A': Optional User Routines

B : Controller Setup Computations

C : Design PI Regulator

D : Design CGT or CGT/PI Controller

E : Evaluate Controller

F : Design Kalman Filter

G : Evaluate Filter

Fig. A-1. CGTPIF General Structure

4
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A.3 Segmentation (Ref 13)

As mentioned above, only certain routines of

CGTPIF are actually in memory at any time during execution.

This selective loading is achieved using a CYBER loader

option termed "Segmentation."

Segmentation is achieved using Job Control Language

and segmentation directives. Source code requires no modi-

fication, and is simply compiled in the usual manner but

without immediate execution. The object files for all

source code and all library routines are then manipulated

according to the segmentation directives to create a seg-

mented object file. This object file may then be executed

like any other executable file.

As the segmented file executes, segments of object

code are loaded and unloaded to achieve the memory-resident

program structure defined by the segmentation directives.

All loader operations are performed automatically. For the

user, execution proceeds as though the entire program were

resident at all times.

For CGTPIF, the Job Control commands and the seg-

mentation directives needed to achieve a segmented exe-

cutable object file are invariant. A listing of the job

commands is given in Appendix E. More detail on segmenta-

tion may be found in Reference 13.

5
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A.4 Use of Library Routines

Routines described in Reference 24 are maintained

in a program library in object form. CGTPIF employs many

of the 'LIBRARY' routines in performing necessary computa-

tion s.

The LIBRARY routines execute very efficiently.

Array subscripting is single-indexed to reduce the over-

head execution time incurred simply in computing array

element addresses. However, as a byproduct of this single-

indexing technique and the array storage mechanism of

FORTRAN, the row dimension allocation within which arrays

are stored must be the same for all arrays used by a

library subroutine call (in some cases in which matrix

transposes are involved, a column dimensioning constraint

is also imposed). The routines included in the CGTPIF SUBS

package accommodate these requirements on the effective row/

column array allocations in each case that LIBRARY routines

are employed.

Three named common blocks of CGTPIF are included to

effect communication with the LIBRARY routines: /MAIN1/,

/MAIN2/, and /INOU/. These provide two temporary arrays,

two parameters related to the row dimension used for array

storage, and three parameters defining files to be used

for input/output (I/O). Later sections of this guide dis-

cuss these and all other common blocks in detail.

6



A.5 Array Storage

A significant characteristic of CGTPIF is its

applicability to problems having a large variety of dimen-

sionalities with system orders as great as 10 to 20. This

is achieved by efficient techniques for array storage,

adaptive addressing of individual arrays, and careful coding

to avoid generating unnecessary temporary storage areas.

The resulting code is not typical of the coding frequently

encountered in matrix routines but is not in itself

especially difficult to understand.

The basic principle in the array storage technique

is simple. A small nunber of one-dimensional arrays are

allocated corresponding to specific computational elements

of the program. Within each allocated vector, individual

arrays are stacked linearly according to the standard

FORTRAN convention (storage by columns). Each array

occupies only as many storage locations as required to con-

tain all its elements, and for each a starting address in

the appropriate linear stack is computed. Any array then

can be located through its starting address in the larger

vector. Thus within a given total allocation for each com-

putational element, individual arrays of many different spe-

cific dimensions can be stored. Each array used can be

considered "full" (the "allocated" dimensions and actual

dimensions are identical).

The usual method for achieving variable array dimen-

sioning involves specific fixed dimensioning of many

7



individual arrays. Although this corresponds more with the

ordinary conception of arrays and makes the code simple to

write, there are disadvantages. Often the overall problem

size which can be handled is smaller since all allocations

assume the maximum value of every specified dimension is

simultaneously attained. Also, problems having different

sets of dimensions inconsistent with the fixed dimensions

may cause individual array allocations to be exceeded while

other arrays have enough excess storage locations to accom-

modate the need. But that storage is not free to be por-

tioned out among the arrays suffering the short-fall and

the problem cannot be accommodated.

In CGTPIF, many of the matrix computations work

with arrays which are "in place" in the large vector

storage areas. In cases in which augmented matrices are

formed, arrays may be moved from permanent storage to

form a partition of a new matrix. Also, in using the

LIBRARY routines it is sometimes necessary to move arrays

from their full storage mode to other temporary storage of

larger row dimension. Finally, other arrays are soetimes

moved from partitions of larger arrays to permanent full

storage.

Figure A-2 illustrates several aspects of array

storage using a model of a partitioned matrix M. While it

is represented in the figure as two-dimensional, storage

is actually one-dimensional and CGTPIF works with single

value addresses within M. Note that M is in full storage

8



A A2
D -1 I -2

M=

A3A

A,: n-by-rn
A2 : n-by-p

A3 : r-by-m

A - r-by-p

* M :(n+r)-by-(m+p)

Fig. A-2. Partitioned Matrix M
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mode and A1 is stored in the manner typical of variable

dimensioning (matrix A1 of dimension n-by-m stored in array

M allocated (n+r)-by-(m+p) locations).

Suppose that array M is itself stored within a

larger vector V and that the first element of M is at loca-

tion LM in V. Columns of M are stored in consecutive

locations in V. Figure A-3 shows M's first column within

V. Note the following addresses are equivalent:

ADDR(V(LM))=ADDR(M(l) )=ADDR(A1 (1,1))

ADDR(V(LM+n-l))=ADDR(M(n) )=ADDR(A1 (n,l))

ADDR(V(LM+n) )=ADDR(M(n+l))=ADDR(A3 (1,))

ADDR(V(LM+n+r-1))=ADDR(M(n+r))=ADDR(A3 (r,l))

ADDR(V(LM+n+r))=ADDR (M(n+r+l))=ADDR(A1 (1,2)) (A-l)

where 'ADDR' is an address function giving the absolute

memory storage location.

Similarly, the addresses of all elements of matrices

A 1l A2 ' A3 , and A4 have equivalents which specify the cor-

responding address within V and M. In the moving of arrays

mentioned previously and in computations involving arrays

it is necessary that such equivalences among addresses be

readily determined. CGTPIF includes several routines spe-

cifically dealing with such array manipulations.

Programmers often encounter difficulties in working

with arrays that are not fixed in size. The array storage

techniques employed in CGTPIF are readily understandable

if careful thought is given to the actual arrangement of

10



V. LM-1

LM

LM+1

Column 1 of M LM+n-l V

I LM+n

LM+n+r-l

LM+n+r

Fig. A-3. Column 1 of M within V



arrays within program memory. If one has not previously

considered such aspects of array storage in FORTRAN programs,

it may be useful to determine various address equivalences

among A' 2' ,3 ' M , and V of Figures A-2 and A-3.

A.6 Common Blocks

CGTPIF uses named Common blocks exclusively. A

total of twenty-five Commons are used. Some provide communi-

cation with the LIBRARY routines, others communicate general

program information, others provide temporary array storage,

and others are associated with specific computational ele-

ments. The last-mentioned Commons will be discussed in

groupings according to the computational element to which

each group pertains. The elements of each Common are given

here but will be described by type only (integer, real,

scalar, vector). Information about array dimensioning is

given in the discussion of the 'MAIN' routine. Specific

definition of the elements of each Common are given in

descriptions of the routines of CGTPIF SUBS.

A.6.1 LIBRARY Commons. Three Common blocks com-

municate with thA LIBRARY routines:

COMMON/MAIN1/NDIM,NDIMI,COM1

COMMON/MAIN 2 /COM2

COMMON/INOU/KIN,KOUT,KPUNCH

NDIM, NDIMl, KIN, KOUT, and KPUNCH are integer scalars.

COMI and COM2 are real arrays providing temporary storage,

and are used occasionally for this purpose by CGTPIF also.

12



Further details are given in the discussion of the MAIN

program.

A.6.2 General Commons. Two Commons communicate

general information:

COMMON/DESIGN/NVCOM, TSAMP, LFLRPI, LFLCGT,
LFLKF,LTEVAL,LABORT

COMMON/FILES/KSAVE,KDATA,KPLOT,KLIST,KTERM

All the variables are scalar and all but TSAMP are integer;

TSAMP is a real. Further detail about the elements of each

*Common are included in the discussions of routines CGTXQ

and MAIN for /DESIGN/ and /FILES/, respectively.

A.6.3 Temporary Storage Comn ns. Three Commons

* provide arrays for temporary storage:

COMMON/SYSMTX/NVSM, SM

COMMON/ZMTX1/NVZM, ZMI

COMMON/ZMTX2/ZM2

NVSM and NVZM are integer scalars. SM, ZMI, and ZM2 are

real arrays. The dimensioning of the arrays is discussed

in the description of MAIN.

A.6.4. Computational Element Commons. Sets of

Common blocks are associated with computational elements

A, B, C, D, and F of Figure A-1. More detail about the

elements of each Common is given in the later sections

describing the routines of each corresponding computational

element.

13
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A.6.4.1 Set A: Establish Dynamics Model. Three

different dynamics models may be employed--for each, three

Common blocks are uzed.

Design Model:

COMMON/NDIMD/NND,NRD,NPD,NMD,NDD,NWD,NWDD,NPLD,
NWPNWD, NNPR

COMMON/LOCD/LAP,LGP,LPHI,LBD,LEX,LPHD,LQ,LQN,LQD,
LC,LDY,LEY,LHP,LR

COMMON/DSNMTX/NVDM, NODY,NOEY, DM

Truth Model:

COMMON/NDIMT/NNT,NRT,NMT,NWT

COMMON/LOCT/LPHT, LBDT,LQDT, LHT, LRT, LTDT, LTNT

COMMON/TRUMTX/NVTM, TM

Command Model:

COMMON/NDIMC/NNC, NRC, NPC

COMMON/LOCC/LPHC,LBDC,LCC,LDC

COMMON/CMDMTX/NVCM,NEWCM,NODC, CM

DM, TM, and CM are real arrays. All other variables are

integer scalars. The various models are discussed in the

next section of this guide.

A.6.4.2 Set B: Controller Setup. A pair of

Commons is associated with the setup computations for

the controller:

COMMON/LCNTRL/LPI 11,LPI12,LPI21,LPI2 2,LPHDL,LBDL

COMMON /CONTROL/NVCTL,CTL

CTL is a real array. All other variables are integer

scalars.

14
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A.6.4.3 Set C: Design PI Regulator. A pair of

Commons is used for the PI design:

COMMON/LREGPI/LXDW,LUDW,LPHCL,LKX,LKZ

COMMON/CREGPI/NVRPI, RPI

RPI is a real array. All other variables are integer

scalars.

A.6.4.4 Set D: Design CGT or CGT/PI. The design

of the CGT or CGT/PI controller uses a pair of Commons:

COMMON/LCGT/LAI1,LAI3,LA21,LA23,LAI2,LA22,LKXAll,
LKXA12,LKXA13

COMMON/CCGT/NVCGT, CGT

CGT is a real array. All other variables are integer

scalars.

A.6.4.5 Set F: Design Kalman Filter. The design

of the Kalman filter uses a pair of Commons:

COMMON/LKF/LEADSN,LFLTRK,LFCOV

COMMON/CKF/NVFLT, FLT

FLT is a real array. All other variables are integer

scalars.

A.7 Dynamics Models

CGTPIF employs three time-invariant dynamics models

for computations: a "design" model, a "truth" model, and a

"command" model. Each model is defined initially as a

continuous-time system, then is discretized by CGTPIF.

Any of the models may be established by user-provided

subroutines, if desired. This section defines each model;

15



a later section discussing computational element A describes

the manner in which the models may be entered into CGTPIF.

A.7.1 Design Model. The design model consists of

a system state differential equation, a disturbance state

differential equation, an output equation, and a measure-

ment equation, as follow:

A(t) = Ax(t) + Bu(t) + E n (t) + Gw(t) (A-2a)

A t) = A n (t) + G wd(t) (A-2b)=d n-id-n-zd

y(t) = Cx(t) + D u(t) + E n (t) (A-2c)

z(t i ) = Hx(t.) + Hn(t i ) + v(t i ) (A-2d)-nd ~

The under-tilde denotes the variable as being modeled as a

random process. x and Ed are the Gaussian system and dis-

turbance state vectors respectively; w and Y are indepen-

dent stationary zero-mean white Gaussian noises with

covariances

E{w(t)wT(t+T)} Q6(t) (A-3a)

E(t+T) = QYn T() (A-3b)

The vectors y and z are the output and measurement vectors,

respectively. v is stationary zero-mean white Gaussian

discrete-time noise independent of both w and and of

covariance

E{v(t )vT(t)} R6.. (A-4)

16



The dimensionalities for the design model are,

n = number of system states

r = number of system inputs

p = number of system outputs

m = number of system measurements

d = number of disturbance states

w = number of independent system noises

wD = number of independent disturbance noises (A-5)

CGTPIF requires that the number of system inputs and out-

puts be equal: p=r. Also, the number of disturbance states

cannot be greater than the number of system states: d<n

(due to setup for solution of the CGT equations of Section

A.11.5, in which the maximum row dimension is assumed to be n).

The dimensions of the matrices defining the design

model are given in row, column specification as

A : n-by-n

B : n-by-r

E :n-by-d-x
G : n-by-w

Q : w-by-w

C : p-by-n

Dy : p-by-r

E : p-by-d-y

H : m-by-n

Hn : m-by-dEn

R : m-by-m

An : d-by-d

17



G : d-by-wD-n

Qn : wD-by-wD (A-6)

The design model is a dynamic model of the system

for which the controller is to be designed. The Kalman

filter will estimate the states of the design model and

these will be employed by the controller for feedforward

and feedback control.

A.7.2 Truth Model. The truth model consists of a

state differential equation, a measurement equation, and two

equations relating the system and disturbance states of the

design model to the truth model states, as follow:

(t) = Atxt (t) + Btut (t) + Gtwt (t) (A-7a)

zt(t. )  H Hxt(t. ) + vt(t i  (A-7b)

x(t) = T WX(t) (A-7c)
-DT-St

n dt) = TNTXt(t) (A-7d)

with x the truth model state and modeled as a Gaussian

random process. x' and n correspond to states of the

design model (equation (A-2)). w, and v are independent

stationary zero-mean white Gaussian continuous and discrete-

time noises with covariances

TEjw t(t)wt(t+t[)} = g6. (A-Ba)

TE{vt(ti)vt(t j ) } = Rt6ij (A-8b)

18
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The dimensionalities for the truth model are,

nT = number of system states

rT = number of system inputs

mT = number of system measurements

wT = number of independent noises (A-9)

CGTPIF requires that the numbers of measurements and of

inputs be equal for both truth and design models: MT = m

and rT = r.

The dimensions of the matrices defining the truth

model are given in row, column specification as

at : nT-by- nT

Bt : nT-by-rT

2t : nT-by-wT

2t : wT-by-wT

-t : mT-by-nT

Et : mT-by-

TDT : n-by-nT

!NT: d-by-nT (A-10)

The truth model represents the same dynamic system

as the design model, but generally may be of greater dimen-

sion and complexity. It is intended to provide as complete

and accurate a description as possible of the system

dynamics, consistent with the design objectives.

A.7.3 Command Model. The command model is defined

by a state differential equation and an output equation:

19
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(t) = AmXm (t) + BsmUm (t) (A-lla)

Ym(t) = Cmxm (t) + DmUm (t) (A-llb)

The dimensionalities of the command model are,

nM = number of model states

rM = number of model inputs

PM number of model outputs (A-12)

CGTPIF requires that the numbers of outputs of the command

iand design models be equal: pM=p. Also, the number of

command model states cannot be greater than the number of

system states of the design model: nM n (due to setup for

solution of the CGT equation of Section A.11.5 in which the

maximum row dimension is assumed to be n).

The dimensions of the matrices defining the command

model are given in row, column specification as

m nM-by-nM

-1m: nM-by-rM

-m: PM-by-nM

Dm: PM-by-rM (A-13)

The command model represents the dynamics that the

controlled system is intended to follow. Typically it is

of relatively low dimension since the desired dynamics

are usually characterized by first- or second-order descrip-

tions.
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A.8 File Usage

In addition to the input/output (I/O) communication

directly with the user terminal, CGTPIF uses four files for

I/O. The 'DATA' file is used for input, files 'SAVE' and

'LIST' are used for output, and file 'PLOT' is used for

input and output. Because of the close relationship between

the SAVE and DATA files, they are discussed first.

A.8.1 SAVE File. During program execution the user

may direct CGTPIF to write any of the system models to the

SAVE file. If the PI design path has been executed, then

the existing sets of PI gains are automatically written to

SAVE just prior to program termination. An integer code

number written along with each output to the file identi-

fies each set of data: the design, command, and truth models

are codes 1, 2, and 3, respectively; the PI gains are code 4.

A code of -1 is written to indicate that no more data is

on the file.

A.8.2 DATA File. A previously created SAVE file

may be given the local file name DATA. During program exe-

cution, CGTPIF can be directed to read system models and PI

gains from DATA as needed. If the data sought by CGTPIF

is not on the DATA file, a message is written to the

terminal and execution proceeds on an alternative path,

as appropriate.
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A.8.3 LIST File. During program execution results

of computations are output to the LIST file under format

direction. After program execution is stopped, LIST may

be routed to a line-printer for listing.

A.8.4 PLOT File. The PLOT file is used by CGTPIF

during controller and filter evaluations. Variables

derived from time-response simulations are written to PLOT

at each time sample. When the time-response run is com-

plete, selected variables are read from PLOT to generate

line-printer plots of the results.

A.9 Description of Routine 'MAIN'

MAIN specifies files to be used and their FORTRAN

unit designations (e.g., 'INPUT' is unit 5); it allocates

all array dimensions for the Common blocks and calls sub-

routine CGTXQ. A listing of MAIN is in Appendix D.

The appropriate unit designations for files SAVE,

DATA, PLOT, LIST, and of the user terminal are set in the

variables KSAVE, KDATA, KPLOT, KLIST, and KTERM, respec-

tively of the /FILES/ Common. The variable KIN of /INOU/

is set to the unit designator for the INPUT file.

Array allocation requires two steps: arrays are

allocated by specifying a vector length for each array in

its common declaration; the length of each array is then

set in an appropriate integer variable which communicates

array allocations to CGTPIF SUBS through the Commons.
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Denoting the integer vector lengths allocated for

the various individual Common arrays as n1 , n2, n 3 , ... ,

n10, arrays are allocated as follows:

COMMON/MAIN1/NDIM,NDIMI ,COMI (n I )

COMMON/MAIN2/COM2 (n I )

COMMON/SYSMTX/NVSM, SM n 2 )

COMMON/ZMTXI/NVZM, ZM (n3 )

COMMON/ZMTX2/ZM2 (n 3 )

COMMON/DSNMTX/NVDMNODY,NOEY,DM(n 4 )

COMMON/CMDMTX/NVCM,NEWCM,NODC,CM (n 5)

COMMON/TRUMTX/NVTM,TM(n6)

COMMON/CONTROL/NVCTL, CTL (n7)

COMMON/CREGPI/NVRPI, RPI (n 8 )

COMMON/CCGT/NVCGT, CGT (n 9)

COMMON/CKF/NVFLT, FLT (n I 0)

Note that the arrays of /MAINl/ and /MAIN2/ have the same

allocations (n ; /ZMTXl/ and /ZMTX2/ also have the same

allocations (n 3 ).

The corresponding statements setting the integer

variables to the array allocations are

NDIM = n1

NVSM = n 2

NVZM = n

NVDM = n 4

NVCM = n 5

NVTM = n 6
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NVCTL = n

NVRPI = n

NVCGT = n9

NVFLT = nl0

The allocations needed for each array are expressed

as functions of the system dimensions of equations (A-5),

(A-10), and (A-12). In the equations to follow, 'MAX' is

a function which takes the largest value from among its

arguments. Also, the following names will be used to repre-

sent certain sums of dimensions (these names correspond to

mnemonics employed within CGTPIF, e.g., "npld" mnemonically

represents "n plus d" and "na" represents "n augmented").

npld = n+d (A-14a)

nnpr = n+r (A-14b)

nwpnwd = w+wD (A-14c)

na = n+d+nt (A-14d)

The array allocations needed are,

2 2
/MAIN1/, /MAIN2/: n1 >_ MAX {[MAX(npld,nnpr)] ,ntl

(A-15a)

/SYSMTX/: n2 _>MAX{606,

n(npld+r+p+m+w) + p(r+d) + m(m+d

+d(d+wD) + w
2 + 2

[(nM+pM) (nM+rM )
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[n (n +r+m +w+npld) + m2 +w 2 1
t t t t t t 1:'

[n(3n.I2MAX(d,rlM )) + p(n M)],

[nnpr(3nnpr+r)l,

22

/ZMTXl/, /ZMTX2/: n 3 > MAX[n1 1 na
2  (A-15c)

/DSNMTX/: n 4> npld(2npld+n+p+m+nwpiwd)

2 2 2 2
+ r(n+p) + m + d + w + WD (A-15d)

/CMDMTX/: n5 > nM(nM~rM+pM) + rM(pM) (A-15e)

/TRUMTX/: n 6> n t(2n t+npld+m+r) + m2  (A-15f)

/CONTROL/: n 7 > nnpr(2nnpr+p) (A-15g)

/CREGPI/: n > r(4r+n) + nnpr2  (A-15h)

/CCGT/: n 9 > (n+2p) (n m+r m+d) (A-15i)

/CKF/: n 10 > npldII(2npld+m)+l] (A-15j)

Routines of CGTPIF SUBS which use these arrays

employ these equations to verify sufficient allocation has

been provided. If not, a message is written which spe-

cifies the array in question and the necessary allocation;

execution then is aborted.

The MAIN listed in Appendix D can accommodate

problems of dimensions given as follow:
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n < 15

npld < 15

r < 5

p< 5

m < 15

w < 15

nwpnwd < 15

n < 10

rM < 5

pM < 5

n t < 20

rt < 5

m < 15

w < 20 (A-16)

In these expressions, the substitutions of equations (A-14a)

and (A-14c) have been used to impose constraints on the

total number of design model system and disturbance states.

These allocations are sufficient for problems all of whose

dimensions are equal to the numbers given in equation (A-16).

Moreover, other combinations of dimensions, some greater

than and some less than these specific dimensions, will

also be accommodated. For the set of dimensions appropri-

ate to one's design problem, the equations of equation set

(A-15) may be used to determine if existing allocations are

adequate; or the problem may be attempted and CGTPIF will

signal any inadequacies in available allocations (if any

26
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exist). The specific values of allocations (n1 through

n10) given by the MAIN or Appendix D are,

n = 400

n2 = 2125

n3 = 1225

n4 = 1750

n = 225 5J
n = 1725

n = 900

n8 = 575

n= 400

n n0' 690 (A-17)

Since there are two arrays of length n1 and also two

of length n3, this represents a total of (11640)10 words

of memory for array storage. As implemented in segmented

form, the memory utilized during execution is the sum of

the memory required by the largest of the load segment sets

and the memory required by the loader itself (about (10000)8

words). The arrays allocated by MAIN are always in memory.

The largest set of segments loaded at any time includes

the segment which utilizes optional user-provided routines

(described in the next section). Thus the total array

allocations and the memory required to implement any

optional routines effectively determine the execution load

size attained by CGTPIF. For the CYBER system and
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interactive execution, the total memory which is available

for array storage and optional routines is about (13000)10

words.

A.10 Optional Routines: Define
Dynamics Models

The user may choose to enter any of the three

dynamics models by using subroutines. Each model definition

requires at least two specific subroutines. These sub-

routines may then call any additional routines to accomplish

the necessary computations--routines of CGTPIF SUBS, LIBRARY,

or any user-provided subroutines may be used. In the list-

ing of Appendix D, DSND, DSNM, TRTHD, TRTHM, ACDATA, GUSTS,

and TBLUP1 are all optional routines used to establish

design and truth models of the longitudinal dynamics of an

aircraft subject to atmospheric turbulence.

For each model defined by subroutines, one sub-

routine must establish the dimensions of the model, and

another must set the values for all matrices of that model.

Each routine must have the appropriate name and argument

list specified below. All model arrays appearing in the

argument lists must be allocated in full manner: the array

dimensions specified by "Dimension" statements within the

routines must be exactly those implied by the routine

specifying model dimensionalities and the array sizing given

by equations (A-6), (A-10), and (A-13). For example, if

the number of design model states (n) is established as 10,

then according to equation (A-6) the system matrix must be
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explicitly uimensioned A(10,10) in the subroutine which

sets array values for the deb gn model. All of these arrays

are initialized to zero before the array setting routines

are called, so it is necessary only to set non-zero array

elements within the subroutines. Any arrays of dimension

one in both row and column are actually scalars and need

not be included in a Dimension statement. Any arrays with

row or column dimension of zero are in fact nonexistent

arrays and must not be included in Dimension statements,

although they still must be included in the subroutine's

argument list (since calls to these routines from within

CGTPIF assume full argument lists).

A.10°. Design Model. The two routines required

for the design model are 'DSND' and 'DSNM'. The first

specifies dimensions of the model while the second sets the

array elements for that model.

DSND has a single argument:

SUBROUTINE DSND (ND)

with ND an inte-ger vector of length seven. In DSND the

elements of ND are set to the dimensions given by equation

(A-5) and in the order shown. Thus, for example, element 1

is set to the value n, element 2 is set to the value r, and

so on.

DSNM has 14 arguments:

SUBROUTINE DSNM(A,B,EX,G,Q,C,DY,EY,H,HN,R,AN,
GN,QN)

Each argument is an array defined in equation (A-2), (A-3),
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or (A-4). Note the order in which the arrays appear in the

argument list is the same as the order of the arrays listed

in equation (A-6) and the dimensions given in that equation

must be specified in DSNM. Thus, for example, if DSND

sets n=5 then the matrix A must be dimensioned A(5,5) in

DSNM.

A.10.2 Truth Model. The two routines required

for the truth model are 'TRTHD' and 'TRTHM'. The first

specifies dimensions of the model while the second sets the

array elements for that model

TRTHD has a single argument:

SUBROUTINE TRTHD (ND)

with ND an integer vector of length four. In TRTHD the

elements of ND are set to the dimensions given by equation

(A-9) and in the order shown.

TRTHM has 8 arguments:

SUBROUTINE TRTHM(AT,BT,GT,QT,HT,RT,TDT,TNT)

Each argument is an array defined in equation (A-7) or

(A-8). Note the order in which the arrays appear in the

argument list is the same as the order of the arrays

listed in equation (A-10) and the dimensions given in that

equation must be specified in TRTHM.

A.10.3 Command Model. The two routines required

for the command model are 'CMDD' and 'CMDM'. The first

specifies dimensions of the model while the second sets the

array elements for that model.
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CMDD has a single argument:

SUBROUTINE CMDD (ND)

with ND an integer vector of length three. In CMDD the

elements of ND are set to the dimensions given by equation

(A-12) and in the order shown.

CMDM has 4 arguments:

SUBROUTINE CMDM(AM,BM,CM,DM)

Each argument is an array defined in equation (A-1i). Note

the order in which the arrays appear in the argument list

is the same as the order of the arrays listed in equation

(A-13) and the dimensions given in that equation must be

specified in CMDM.

A.11 CGTPIF SUBS

In contrast to the routines described in Sections

A.9 and A.10, the routines of CGTPIF SUBS require no modifi-

cation to apply to specific design problems. In discussing

CGTPIF SUBS some detail as to the operation of specific

routines is given. For users who may elect to attempt

modification of routines, a detailed examination of the

source code is essential.

The executive routine for CGTPIF SUBS-CGTXQ- is

discussed first. Each major computational element and con-

stituent routines are then discussed in turn.

A.11.1 CGTXQ. The overall execution logic of

CGTPIF is determined by routine 'CGTXQI. Specific

execution of the designs is achieved by calls to other
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individual routines, which are in turn executives to

routines comprising the various computational elements

shown in Figure A-I.

Figure A-4 gives a flowchart of CGTXQ which empha-

sizes the major program decisions. Blocks representing

calls to the particular computational elements give (1)

the name of the routine which is executive to that element,

and (2) the letter code used in Figure A-I to represent

that element.

All "flag" variables used by CGTXQ and CGTPIF SUBS

are integers. A value of zero implies that the condition

flagged is not true. While a non-zero value generally

implies the condition is true, positive and negative values

sometimes distinguish between different attributes of that

condition. Flags which pertain to general program logic

are included in the /DESIGN/ Common; flags which relate

strictly to specific computational elements are passed as

arguments in calls to the respective executive routines.

The elements of Common /DESIGN/ are defined as

"NVCOM": The smaller of the array allocations of

/MAINl/ and /ZMTXl/. Throughout much of

CGTPIF SUBS, the same array sizes are needed

for COMI, COM2, ZMI, and ZM2. NVCOM is

tested to determine if sufficient allocation

is available for the temporary arrays.

"TSAMP": The controller sample period (in seconds).
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"LFLRPI": Flag variable indicating availability of PI

gains in program storage. A value of 0

means the gains are not available. Values

of -1 and +1 mean the gains are available and

have been obtained either from the DATA file

or by computation in the current program

execution, respectively.

"LFLCGT": Flag variable indicating if CGT design/

evaluation is in execution. A value of 1

means a CGT design has been determined, while

values of 0 and -1 mean the converse. More-

over, a value of -1 signifies that an open-

loop CGT design is infeasible (PI gains not

available and design system unstable).

"LFLKF": Flag variable indicating filter design is in

execution.

"LTEVAL": Flag variable indicating controller evaluation

is with respect to truth model.

"LABORT": Flag variable indicating execution abort

status. If LABORT is positive then execu-

tion will abort due to insufficient array

allocation, and the specific value is the

allocation needed. If LABORT is negative,

the abort is due to dimensional incompatibil-

ity as mentioned in Section A.7 for each

model. If the incompatibility affects the

design model the program aborts execution;

for the other models only the specific exe-

cution path is aborted.
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"IPI", "ICGT", "ITRU", and "IFLTR" are additional

flags related to specific computations. IPI and IFLTR

test the successful execution of the computations of

routines 'PIMTX' and 'FLTRK', respectively. The other two

flags have values according to:

"ICGT": Flag tests if command model is established.

A non-zero value indicates the command model

is established, and if negative that it has

also been written to the SAVE file. If the

command model is not established, ICGT is

zero.

"ITRU": Flag tests if truth model is established.

Specific values have the same significance

as for ICGT, but with respect to the truth

model.

CGTXQ includes other decision tests not shown in

Figure A-4. These are not discussed since they involve

obvious tests on the flags defined above and the code is

simple.

A.11.2 SETUP. Routine 'SETUP' serves as an inter-

mediary in establishing the various dynamic models used by

CGTPIF. It calls one of three other routines according to

the value of its input argument "ITYPE". The design, com-

mand, or truth models are established for ITYPE = 1, 2, or 3,

respectively.

The routines 'SDSN', 'SCMD', and 'STRTH' actually

establish each of the models. Each uses the routine 'RSYS'

to enter the continuous-time model representation. The
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model's arrays are stored initially in vector SM of

/SYSMTX/ Common. Each model is discretized (using the

sample period T = TSAMP) and the new arrays defining the

discrete-time models are stored in permanent vectors DM,

CM, or TM of the /DSNMTX/, /CMDMTX/, or /TRUMTX/ Commons,

respectively.

The continuous-time models are entered with sub-

routine RSYS. The models may be entered directly from the

user terminal, from the DATA file, or using optional user-

provided routines described in Section A.10.

The computations performed under SDSN, SCMD, and

STRTH are discussed below. The routines which perform each

computation are indicated following the equations.

A.11.2.1 SDSN. SDSN calls RSYS to read in the

dimensions of the design model and the arrays defining it.

The dimensions are stored in the variables of /NDIMD/.

The first seven variables are the dimensions of equation

(A-5) in order and the final three are the sums of dimen-

sions of equations (A-14a), (A-14c), and (A-14b), respec-

tively. A call to 'DSCRTD' then gives the discretized

model.

An augmented system description is formed with

the system and disturbance states:

-a = LWat]=(A-18)
-a nt d~M 

(t
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and partitioned matrices describing the dynamics of the

augmented system are formed:

A_ : E xA 1 a
2AEA =--- (A-19a)

-a

G 0

G -- - (A-19c)
-a IF L

Q [4- ] (A-19d)-a

with component matrices defined in equations (A-2) and

(A-3). Matrices A and G are stored permanently in vector
-a -a

"DM" for reuse in Kalman filter design.

The corresponding discrete-time augmented state

transition model is,

x (ti) = x (t.) + B u(ti ) + wa(t i)7a i+l -aza 1 ad- i ad2

(A-20)

where, assuming u is constant over a sample period,

' AT

0 e-a  (A-21a)
-a
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T

Ba Aa f (T-T)B adT (A-21b)
ad 0 -a -

where 0 (T--r)=e A T ) and the strength of w is given by
-a ad

9a d 0-aaa-a-a(Alc

Matrix 0 is stored permanently in vector "FLT" of /CKF/
-a

and Q is stored permanently in vector DM.
-a d

"a and B may be partitioned to the component-a -a d
dimensions to yield

!a L444- (A-22a)

B =FAi(A-22b)

Matrices 4), E , ) and B dare stored permanently in
xd

vector DM. The deterministic discrete-time design model

then is,

E(t. ) Ox(t.) + B u(t.) + E n (. A2a
-i+l - i -d- i -xd dti 1 A2a

-n-ld (i) A2b

Y(t) Cx(t. + D u(t.)+E n (t. (A-23c)
i -y- i -y:!
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Matrices C, Dy, and E are as originally defined and are

retained in vector DM. Equations (A-23a-c) are used to

propagate the time response for the design model in the

controller evaluation routines.

An augmented measurement matrix is formed and

stored in vector DM:

H = [H H (A-24)
-a -n

where H and H are as in equation (A-2d).
-n

The noise strengths Q, Qn' and R of equations (A-3)

and (A-4) are also stored in vector DM so that they are

available for modification in the Kalman filter design

path.

To avoid unnecessary computations in later code,

if matrix E does not exist or if D or E are zero-y -y -y

matrices then the variables "NODY" or "NOEY" (/DSNMTX/)

are set to 1 as appropriate. In other circumstances these

variables are zero and computations involving these arrays

are carried out.

Equations (A-18) , (A-19), (A-21) , (A-22), and

(A-24) are computed under the direction of DSCRTD. Routine

'QDSCRT' (called by DSCRTD) forms the partitioned matrix

Qa and computes the matrix Qa using the LIBRARY routine

'INTEG'. DSCRTD computes -P and B using a call to the-a -ad

LIBRARY routine 'DSCRT'.
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A.11.2.2 SCMD. SCMD begins by testing if PI

regulator gains are available. If they are, a CGT/PI

design will be pursued by routine 'SCGT'. If not already

available, the user may choose that the PI gains be read

from the DATA file. If the gains are not available and

the system is stable then an open-loop CGT design will be

pursued by SCGT; otherwise, if not stable, no CGT design

is allowed and SCMD is exited. The logic is represented

in the flowchart of Figure A-5. The remainder of SCMD

is indicated by the block "establish command model" and

is described below.

The command model may be established repeatedly

during program execution. It is entered with a call to

routine RSYS. The dimensions of the model are stored in

the variables of /NDIMC/ and in the order shown in equa-

tion (A-12). A call to 'DSCRTC' then gives the discretized

model:

Xm(ti+ I ) = _m(ti) + B u (ti) (A-25a)m i+1 nr- --m d-m

Ym(ti) = CmX (t i ) + Dmum (ti) (A-25b)

where, for u constant over a sample period
-m

e (A-26a)

+T

B J0 f m(T-T)B mdT (A-26b)
d  0
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and A, B, C, and D are as defined in equation (A-i).-m

Matrices $ and B d are computed with a call to

routine DSCRT of the LIBRARY. -m , Bm , Cm , and D are

stored in vector "CM" of /CMDMTX/. Equations (A-25a,b)

are used in propagating the model states and outputs in

the controller evaluation routines.

In /CMDMTX/, the variable "NEWCM" signals that a

new command model is being established (NEWCM non-zero).

If the matrix D is zero, the variable "NODC" is set to a-m

non-zero value.

A.11.2.3 STRTH. The continuous-time truth model

is established with a call to routine RSYS. During program

execution the truth model can be redefined as often as

desired. The dimensions of the model are stored in the

variables of /NDIMT/ in the order shown in equation (A-9).

A call to 'DSCRTT' discretizes the truth model:

xt(ti I  = (_tt ) + Btd11t ( t . ) + tw (t. )

(A-27)

where, for ut constant over a sample period,

-- e (A-28a)

Bt d Pt (T-T)B tdT (A-28b)

and the strength of the noise is,
dd
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Matrices -t 't t as well as Ht , Rt, TDT, and TNT are
d d t t-N

stored in vector "TM" of /TRUMTX/.

DSCRTT computes 0t andBtd using routine DSCRT of

LIBRARY. Q is computed using routine INTEG.*td

A.1l.3 PIMTX. Computations that are necessary

to the controller designs but independent of design itera-

tion for a fixed design model are computed under the

direction of PIMTX. The input argument IPI is set to 1

following successful computation; subsequent entries into

PIMTX then test IPI and return immediately without recompu-

tation of the information.

PIMTX forms an augmented matrix and then forms its

inverse. The resulting matrix is termed the H matrix.

Partitions of the n matrix into sub-arrays of the original

component dimensions are then stored individually in the

vector "CTL" of /CONTROL/.I ;I
Pd (A-29a)

L Y_

11=[i --- 2l2 (A- 29b)

L121 2 22]

Matrices , Bd , C, and D are as defined in equation

(A-23). The H_ matrix is used in computations for both the

PI and CGT controllers.
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PIMTX then calls routine 'CDIF', which sets up two

augmented matrices for the control-difference PI regulator:

Bd

!-6 (A-30a)
-1A

0 I

II
--)6 and B6 are stored in vector CTL of /CONTROL/.

A.11.4 SREGPI. Computations involved in the

design of the PI regulator are directed by routine SREGPI.

Routine 'WXUS' is called first to determine the quadratic

weighting matrices of the discrete-time optimal cost func-

tion from the continuous-time input quadratic weights.

Quadratic weighting matrices (assued diagonal) are

entered directly by the user from the terminal for costs

assigned to output and input deviations and to input rates--

Y, y , and U respectively. These matrices are stored in

vector "RPI" of /CREGPI/. An augmented perturbation state

vector is defined to be

16xt
x (A-31)

L6uX
A weighting matrix on the state vector x is formed as
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x = c yc (A- 32a)

X =U +DTYD (A-32b)-c22 -Y- y

X cTYD (A-32c)-c12 -y

Routine 'FORMX' performs these computations and forms

X 11 X2 (A-33)
; --c12 -- 22J

The user is then given an opportunity to modify individual

elements of X (symmetry is preserved automatically by

WXUS), as for instance, to alter individual diagonal ele-

ments of X The associated continuous-time cost func--Cll

tion is,

t rLdt (A-34)

where u is the control difference ("pseudo-rate")

u = Au (A-35)

The corresponding discrete-time cost function is defined

by
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N

J u .. X (t.)X 3x(t )+U (t 011(t )+2x(t . 6~
i=O

(A-36)

and the discrete costs are,

.T

f(T) 6() (A-37b)

t.
1

f [ 6 f$T TzXB (T)UIT (A-37c)
ti

in which

%(T)= [~J4~~~IL](A-37d)

RdC f ()Bda (A-37e)
0

and B6 is as defined in equation (A-30b). The integrals

of equations (A-37a,b,c) are approximated in a two-step

computation. First, 0and B6 are treated as constants

over the sample interval with value set to their respec-

tive averaged values at the beginning and end of the

interval:
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= [I + (A-38a)

and B6 = [O + B6 (A-38b)

in which -@ and B are as defined in equations (A-30a,b).

With these approximations, each of the integrands is con-

stant over the integration time T, so the integrals are

obtained as

X = T[ X (A-39a)

u - T[ _x c (A-39b)

S- T[_ XB6  (A-39c)

This is a better approximate evaluation than simple Euler

inegration provides. These three discrete-time costs are

returned by WXUS as arguments "X", "U", and "S", respec-

tively.

The cost function of equation (A-36) includes the

cross-weight S 6 weighting products of states and inputs.

Routine 'PXUP' is called to compute modified system and

weighting matrices to allow the optimization to be framed

in terms of state and input quadratic costs only (Ref 29):

Define a modified system,

xlti+l = _g(t i ) + B (ti) (A-40a)

47

4 *.



with

±6 - 6-1I T (A-40b)

+-iT-S62 (A-40c)

for which the cost function becomes

; N
J'= -i--[_(ti)X-x_(ti)+uT(t i)U 6u_(t i] (A-41a)

i=O

and

x- 2i6 -TsH6_s6 (A-41b)

The cost function of equation (A-41a) is now in standard

form for solution of the steady-state Riccati equation.

PXUP returns matrices _ , X!, and U6 1S of equations

(A-40b), (A-41b), and (A-40b), respectively. An additional

matrix needed for the routine which computes the solution

to the Riccati equation is also computed by PXUP:

-l2 T6 (A-42)

SREGPI next computes the steady-state solution to

the discrete-time Riccati equation using routine 'DRIC' of

LIBRARY. DRIC solves for KR in

48 + (A-43)ER i6-ER(--6z--R
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using an iterative procedure discussed in Reference 24.

In addition to KR, DRIC returns the closed-loop system

matrix

-- (I+UKR)1-i (A-44)-16CL R 1

which is stored in vector RPI.

Routine 'GCSTAR' then is called to compute the

optimal feedback gain matrix for the original system in

two steps:

The optimal feedback gains for the modified system of

equation (A-40) are,

G*" (U +BRR6B) T (A-45)
--c -1 BKR6 6 1-5

and from these the optimal feedback gains for the original

system are obtained:

Gc U1T (A-46)
-2c -c §

which can be considered as partitioned into gains on the

components of the state vector x of equation (A-31). The

optimal input then is,

F6xt
Au*(t i) =- _ G2* ]It (A-47)

SREGPI uses these partitions of G* and partitions
-c

of the fn matrix of equation (A-29) to compute the gains

K and K of the optimal PI regulator and stores them in-X -Z

vector RPI:
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KX - _ ii +* 221 (A-48a)

K = G* r + G* 2r (A-48b)-z -c 1-12 -C 2-22

The PI regulator in incremental-form (Ref 32) utilizing

these gains is implemented as,

u(t i ) =u(t i_- K x[x(ti)-x(t i-l)H

-K z  D (A-49)
yU (t 1

The controller evaluation routines which propagate the

response of the PI regulated system to non-zero initial

conditions use equation (A-49) to compute the control

input. Note that this assumes that the outputs are to be

driven to zero by the PI regulator. No provision is made

for evaluation of the PI regulator in response to control

inputs.

A.11.5 SCGT. Routine SCGT directs the computa-

tions involved in design of an open-loop CGT or closed-

loop CGT/PI controller. The first set of computations

are performed by routine 'CGTA'; the results depend only

on the design and command models. Since the design model

is invariant throughout program execution, CGTA is not

called unless a new command model has been established

(test value of variable NEWCM in /CMDMTX/).
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The CGT theory formulates an "ideal" state and

input trajectory to achieve exact matching with the command

model outputs. These ideal trajectories are assumed to be

expressable as linear functions of the command model's

states and inputs and the disturbance states:

_ Alx (t.Lx(t A -n~
~.i )][- amj (t i) (A-50)
ti A21' I 21A2 --

A set of equations are derived for the A 11throughA2'3

partitions. They are,

-1 -1-1 -I) + 7 2C (A-51a)
A iAl (4' - 1)-

-12 -E1-11-rn -12-rn (A-51b)

A =itA 4'-I) - 7 E IT i 1 E (A-51c)-13 -11-13 -n - ll1x d 1-

-21 -21-11 (0m - -r22-rnm (A51d)

A =t 1AB +tD (A-51e)

-22 -21k11-rn -22-n

A = t A (0 -1) - it E Tr E (A-51f)
-23 -21-13 -n - -2 lx d -22-y

Of these equations, those for A 11 (equation A-51a) and

13(equation A-51c) must be solved independently. The
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other equations then express the remaining Aij matrices in

terms of known matrices. The two equations to be solved

are of the form

X = AXB + C (A-52)

for which an algorithm for solution is reported in Refer-

ence 4. This algorithm has been implemented in routines

described in Reference 10. Certain conditions which must

be met for a solution to exist are discussed in these

references and in Reference 32, as well as in Section

3.3.3 of this thesis.

CGTA sets up equations (A-51a) and (A-51c) then

calls routine 'AXBMXC' to solve for Al1 and A AXBMXC

solves each equation using routine 'SLVSHR'. Iterative

refinement of the solution is pursued until the Euclidean

norm of the error residual matrix is less than 10- 6

(routine 'ENORM') or as many as three refining iterations.

If the solution does not meet the error tolerance after-

three refinement steps, a message is printed and execution

proceeds. The routines AXBMXC, SLVSHR, and ENORM are

adaptations of routines described in Reference 10.

With A11 and A1 3 determined, CGTA proceeds to

compute A1 2, A21, A2 2 , and A23. All the Aij matrices are

stored in vector "CGT" of /CCGT/.

SCGT then calls routine 'CGTKX' to compute the

gains employed by the CGT and CGT/PI controllers. For the

open-loop CGT controller routine SCMD sets matrices K
-X
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and K of equation (A-48) to zero. CGTKX computes gains-z

on command model states and inputs and disturbance states,

respectively, as

K KA + A (A-53a)
-X -X-ll -21m

K - K xA12 + A22 (A-53b)

Kxn K xAI3 + A23 (A-53c)

These three gains are stored in vector CGT.

The closed-loop CGT/PI control law is implemented

in incremental form as

u(t i ) = u(ti_) - K [x(ti)-x(ti ]

+ K [x (t.)-x (t.
x -m 1 - 1m

+ K [um (t i )-u m(t i 1 ) ]
u

+ K [d(ti)-n d (t i l )]

+ K zn [C m  D m  XU (t i-)

-[C D] (A- 54)

The open-loop CGT is obtained by employing equation (A-54)
with PI gains K and K both zero matrices, giving the

-x -Z

effective result for the open-loop CGT control law as
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u(t) - u(t i_) + A 2 [x m(t)-X m(ti_1)]

+ A22 [u m(ti)u -m(ti_ 1 ) ]

+ A23 [nd(ti)-n (t ~) (A-55)

Equation (A-54) is used by the controller evaluation

routines to compute control inputs for either CGT con-

troller.

A.11.6 CEVAL. Routine 'CEVAL' is executive to a

set of routines which perform evaluations of the PI, CGT,

or CGT/PI controllers. If the PI regulator is being evalu-

ated, the continuous-time domain mapped eigenvalues of the

closed-loop matrix --CL of equation (A-44) are computed

and printed by the routine 'POLES'. The primary evaluation

tool is the simulated time-response of the controlled

system. For the PI regulator the response is generated

for non-zero initial conditions and no commanded input.

The system with either CGT controller is driven by step

inputs on any one of the command model's inputs and by

non-zero initial conditions on system and disturbance

states, if desired. The system time response can be propa-

gated using either the design model or the truth model

state transition equations. Plots of the resulting time

behavior of the states, inputs, and outputs of the system

are printed at the user terminal and output to the LIST

file.

54



Specific execution of the controller evaluation is

affected by flags "LFLCGT" and "LTEVAL" of /DESIGN/.

These signal the design as either of PI (LFLCGT=O) or CGT

type, and indicate the evaluation is to be with respect

to the design (LTEVAL=O) or truth models. The flowcharts

of Figures A-6a,b,c show the basic decisions and execution

paths pursued in the controller evaluation. As many as

two plots of user-selected variables may be printed at the

user terminal while plots of all relevant variables are

also output to the LIST file. If the user wishes no plots

printed at the terminal, the time-response simulation is

not executed. Each plot can include as many as five vari-

ables plotted versus time.

Because the routines execute differently according

to the specific conditions of the controller to be evalu-

ated and the system model used for simulation, there are

numerous tests and variant sections of code. Details

finer than that shown in Figures A-6a,b,c are not discussed.

Response variables are stored at each time step

in sets by type in the scratch vector SM of /SYSMTX/.

A collection of several sets of variables is itself con-

sidered to be the set of all relevant variables for plot-

ting at each sample time. Other sets of variables at one

'I sample-time in the past are also stored in vector SM. The

partitioning of SM occurs both in routine CEVAL and 'VOUTIC'.

Routine VOUTIC is used to establish initial condi-

tions for the system and to define the desired plots. The
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states of the model to be used for system time propagation

are given initial values by the user. For the PI evalua-

tion, the following variables may be plotted: system

states, outputs, and inputs. For the CGT evaluation the

disturbance states and the outputs of the command model

may also be plotted. If a command model output is among

the variables in a terminal plot, then all variables of

the plot are plotted using a single scale range to facili-

tate evaluation of actual and commanded output responses.

For all other plots each variable is scaled independently.

Ordinarily the input argument "NVOUT" specifies the total

number of relevant system variables available for plotting.

VOUTIC sets NVOUT to zero if no plots are to be printed at

the user terminal; CEVAL then does not perform a simula-

tion.

Routine 'CTRESP' performs the time-response simula-

tion. An input argument gives the total intended duration

of the simulation ("TEND"). CTRESP executes the simula-

tion as an integer loop with control inputs and model propa-

gation computed during each pass. The value of TEND is

adjusted so that the total time is an integer multiple of

the controller sample period and of one hundred. Thus all

plot samples coincide precisely with controller samples

and the entire time interval is spanned by 100 evenly

spaced samples. The loop is executed for the number of

steps thus determined. A vector of response variables is
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written to the PLOT file at one hundred equally spaced

time samples during the simulation.

In performing the simulation, eight primary routines

are used. They are discussed briefly below:

'DUPDAT': Propagates the states of the design model

forward in time using equations (A-23a,b).

'CUPDAT': Propagates the states of the command model

forward in time using equation (A-25a).

'TUPDAT': Propagates the states of the truth model

forward in time using equation (A-27) with-

out the noise input.

'XFDT': Transforms the state vector of the truth

model to the design model state and distur-

bance vectors using equations (A-7c,d).

'URPI': Computes the control input due to the PI

controller alone using equation (A-49).

'UCGT': Computes the control input due to the CGT

controller alone and adds it to the control

given by URPI. The increment due to the CGT

or CGT/PI alone is added as

u(ti) u(t i) + K [x m(ti)-xm(t i)]

+ Kx  u m(t i )-u m (t i l ) ]

+ K [nd(ti)-nd(ti-l)]--n

+ [Cm  Dm] (A-56)
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'YDSN': Computes the outputs of the design model

using equation (A-23c).

'YCMD': Computes the outputs of the command model

using equation (A-25b).

On return to CEVAL the PLOT file contains 101 sets

of samples from the system time response simulation

(sample at time=0. and one hundred additional samples at

equal time intervals). Plots of selected variables to the

user terminal include 51 sample points for each variable.

If the time duration originally requested for the simula-

tion spanned fewer than 50 controller sample periods, the

terminal plots will have a duration equal to 50 times the

controller sample period. Otherwise, alternate samples

from among those on the PLOT file are plotted: the entire

duration of the simulation is spanned but with time resolu-

tion half as fine as available from the PLOT file samples.

Plots are then output to the LIST file. These plots include

all sample points and all variables are plotted. Each plot

includes the time-responses of five variables. Routine

'PLOTLP' computes and prints all plots to the terminal and

the LIST file.

When plotting is complete, CEVAL provides the oppor-

tunity to perform additional simulations with the same

controller. When no additional simulations are to be run,

CEVAL is exited.
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A.11.7 FLTRK. Routine 'FLTRK' effects design of

a steady-state Kalman filter for the design model defined

by equations (A-20) and (A-21). The measurement equation

given by equations .(A-2d) and (A-4) is rewritten in terms

of the augmented state vector and augmented measurement

matrix (equations (A-18) and (A-24)):

z(t i } = H x (ti) + v(t.) (A-57)-- -a-a -

A call to routine 'KFLTR' of LIBRARY computes the steady-

state covariance matrix and the Kalman filter gains. The

covariance matrix is the solution P satisfying
-a

± T H *+HP + (A-58)
-a - aa----a~ - a-P-la + a d

and the Kalman filter gain matrix is,

H T -T -1 A-9KF aH-a [Ha P aH a+R] (A-59)

The P matrix employed is prior to update (Pa I .

-a -a

KFLTR uses an iterative technique described in Reference

24 to compute the matrix P The filter gain matrix K
-a -F

is stored in vector FLT of /CKF/. A vector of the standard

deviations of the state estimates (square-roots of the

diagonal elements of P a is also stored in FLT. An addi-

tional output of KFLTR is the measurement update matrix

MK = [I - KF Ha ]  (A-60)

It is put into temporary storage in vector COM2 of /MAIN2/
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for use in the filter evaluation routines.

The first execution of FLTRK in a given run of

CGTPIF uses the matrices Q and R of equations (A-21c)
a d

and (A-4) as determined from initial entry of the design

model. Subsequent executions of FLTRK begin by offering

the user an opportunity to modify the system noise strength

matrices Q and Qn (no provision is made for direct entry

of the augmented, discretized noise strength matrix Qa
ad

and the measurement noise strength R of equations (A-3a),

(A-3b), and (A-4), respectively. Routine 'QDSCRT' is

called to form Qa (equation (A-19d)) and compute the new

discrete-time system noise covariance matrix Qad as given

by equation (A-21c). A new Kalman filter gain matrix is

then computed as described above.

A.1l.8 FEVAL. In 'FEVAL' the eigenvalues of the

design model-Kalman filter system are computed with a call

to POLES. The primary evaluation tool is a covariance

analysis of the filter in which the filter's estimation

error is evaluated in operating on measurements taken from

the truth model. These "true" estimation error standard

deviations are plotted along with the filter's computed

error standard deviations.

The poles of the system with filter are the eigen-

values of

S= --KHa = -F Da]-a (A-61)
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where MK , -a' KF and H a are given by equations (A-60),

(A-21a), (A-59), and (A-24), respectively.

The covariance analysis entails propagation of an

error covariance matrix through fifty filter (controller)

sample periods. At each time sample a vector of true and

filter computed estimation error standard deviations is

written to the PLOT file. When the run is complete these

are plotted pairwise (true/computed) for each state in

a series of plots to the LIST file. The final RMS errors

for each state are also printed at the user terminal.

Define an augmented state vector

[ x=
-c (A-62)

with xt the truth model states and x the filter state

estimates. Time propagation for the augmented state is

given by

x (t) x (ti 1 )+w (ti (A-63)

where

-C 0 (A-64a)

and W is zero-mean white Gaussian discrete-time noise of

discrete-time noise covariance
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E{w (t)w T (t.) Qc 6.(-6b

with

g2 T
QCd = c J (T-T %Qt (T-r) dT (A-64c)

and

GC (A- 64 d)

In these equations 0t Qa and Gt are from equations

(A-28a), (A-2la), (A-Ba), and (A-7a), respectively.

Note that equation (A-64c) is actually

Qc di(A-65)

where~~~~ is deemnd codn0t qaio A2cd

FEVAL uses Q t directly rather than form the larger matrix

QC
d

The measurement update equation is,

x (ti) = Ax (ti) + K v (t.) (A-66)

in which

A--- (A-6 7a)

-c~
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Kc =LI (A-6 7b)

Initial conditions for x (t+) are taken as the zero
-c 0

vector.

The covariance of the augmented state x is

assumed to be zero at the initial time (P (t 0 )) and is-C0

propagated forward by

Pc(ti) = @ P (t + i)D T + Q (A-68a)
-c 1 -C-c i-i -c Cd(A6a

and

CP (t) = AcP (t.)A + EcRET (A-68b)
-c -- c i -c -cc

Note that in equation (A-68b)

00-
ECj ----- TI (A-69)

FEVAL forms the lower right partition of equation (A-69)

rather than forming the larger matrix K RtKT.

The filter estimation error for the design model's

system and disturbance states following measurement update is,

ec(ti) = C x (t.) (A-70)

with

C [-Ct I] (A-71a)
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and

t= [TD TNT] (A-71b)

in which TDT and INT are as defined by equations (A-7c)

and (A-7d).

The estimation error covariance at each sample

period is thus

P (ti) =C P (t+) T (A-72)
-e c C

The diagonal elements of P are the variances of the esti--e

mation error for each system and disturbance state.

Taking the square-root of each to obtain the standard

deviations, these and the standard deviations from the

filter's computed covariance matrix are written to the

PLOT file at each sample time.

Routine 'DACOV' forms matrix Cc of equation

(A-71a) and then computes P (t i ) according to equation

(A-72). The true and filter computed standard deviations

of the estimation error are then determined and written to

the PLOT file.

Routine 'ACOVUD' first forms matrix D of equation

+ T(A-64a). The product ±_cP (t+ )_ is then obtained and

2td is added to its upper left partition to give P (t-) as
d 2.i

in equation (A-68a). Next the matrix A of equation--c

(A-67a) is formed. Then, after computing AcP (t.)AT
2.i -c
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the product KFRtKT is added to its lower right partition

to obtain P (t+) of equation (A-68b).-c i

The adding of a given matrix to a partition of

another as required for equations (A-68a) and (A-68b) is

accomplished by routine 'FPADD'. Input arguments to FPADD

specify the size of the partition to be dealt with ("NRY"-

by-"NCY") and the starting address of that partition

("LADDR") in the large matrix.

FEVAL calls DACOV initially to determine the errors

at time=O., then calls ACOVUD and DACOV repeatedly in a

loop to obtain the errors at each time sample. When these

samples are completed, plots of the results are output to

the LIST file using calls to PLOTLP for each state. The

RMS errors at the final time sample are printed at the

terminal for each state.

A.11.9 Utility Routines. CGTPIF includes a

number of routines which perform specific computations

useful to several of the larger computational elements

discussed in Sections A.II.2-A.II.8 above. Each routine

will be discussed briefly. The function performed and the

input/output arguments will be delineated. In a few cases

variable "LABORT" (signifying abort of program execution)

of /DESIGN/ or the model dimensions of /NDIMD/, /NDIMC/,

or /NDIMT/ are modified; in all other cases only variables

appearing as formal arguments are modified by the sub-

routines.
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RSYS (A, L, ND, ITYPE, IWRT)

Routine 'RSYS' is used in entering any of the three

dynamic models describing the design problem. It

distinguishes among the models it is dealing with

and provides prompts to the user appropriate to

each. Its formal arguments are:

"A": Output vector containing all arrays

defining the dynamic model.

Output vector containing the starting

addresses of each array within vector A.

The order of the array starting addresses

is the same as in equations (A-6), (A-10),

or (A-13).

0"ND": Output vector used internally by RSYS to

store the dimensions of the model being

entered. The order of the dimensions is

the same as in equations (A-5), (A-9),

or (A-12).

"ITYPE": Input integer scalar signifying the model

to be entered. Values of 1, 2, or 3

refer to design, command, or truth models,

respectively.

"IWRT": Input/output integer scalar indicating if

specific model has been previously

entered, and if so if it has been written

to the SAVE file. For IWRT non-zero the

model has been successfully entered; for

IWRT negative the model has also been

written to SAVE. IWRT is initialized to

zero by the calling routine and set to
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values by RSYS to control its functioning

in subsequent calls dealing with the same

model.

DSND (ND)

Routine 'DSND' is a dummy routine of the same name

as an optional routine described in Section A.10.

It is loaded if the user does not include the

corresponding functional routine. It sets the first

dimension of the model to zero, signaling RSYS that

a "real" routine does not exist.

"ND": Output vector intended to contain model

dimensions. Its first element is set to

zero.

CMDD (ND)

Same as for DSND.

TRTHD (ND)

Same as for DSND.

DSNM (A, B, EX, G, Q, C, DY, EY, H, HD, R, AN, GN, QN)

Routine'DSNM' is a dummy routine of the same name

as an optional routine described in Section A.10.

It merely "completes the load" in the event the user

elects not to include the functional routine.

* CMDM (AM, BM, CM, DM)

Same as for DSNM.

TRTHM (AT, BT, GT, QT, HT, RT, TDT, TNT)

Same as for DSNM.
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DSNDM (ND, NAD)

Routine 'DSNDM' sets values into the design model

dimension variables of /NDIMD/. It also stores the

array dimensionalities of the model into a two-

dimensional array for use by RSYS. Finally, it

tests to determine if sufficient allocation has

been provided in vector DM of /DSNMTX/; if not,

LABORT of /DESIGN/ is set to flag allocation

error.

"ND": Input vector of model dimensions.

"NAD": Output array of model matrix dimensions.

Columns 1 and 2 are the [row,column]

dimensions of each matrix in the order

of the arguments of DSNM. For example,

matrix "B" is argument 2 and is of dimen-

sion (n-by-m); thus DSNDM sets NAD(2,1)=n

and NAD(2,2)=m.

CMDDM (ND, NAD)

Same as for DSNDM but for command model and common

blocks /NDIMC/ and /CMDMTX/ are used.

TRTHDM (ND, NAD)

Same as for DSNDM but for truth model and common

blocks /NDIMT/ and /TRUMTX/ are used.

ZMATIN (A, NR, NC, IZ)

Routine 'ZMATIN' is used to read in matrices

entered by specifying the element address (row,

column) and value. If an entry is attempted that

is not in array bounds, a message is printed and the

entry not accepted. A row entry of zero signals

end of array entries.
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"A": Input/output array in full storage mode.

"INR": Input integer scalar specifying row dimen-

sion of A.

"NC": Input integer scalar specifying column

dimension of A.

"lIZ": Input integer scalar affecting execution

of ZMATIN. For IZ positive, matrix A is

first zeroed. For IZ negative, A is

constrained to be symmetric.

WFILED (NT, NP, ND, A)

Routine 'WFILED' is used to write data to the SAVE

file. It executes four writes: (1) a pair of

integer scalars specifying the data code and the

nunber of data points; (2) an integer vector of

length ten with the dimensions of the model in data;

(3) a real vector containing data arrays; and (4) a

pair of integer scalars, the first indicating end

of data on SAVE file, the second a dummy. The end

of data code (-1) is written on SAVE initially by

CGTXQ; each execution of WFILED begins with a

"backspace" on SAVE to allow the already existing

end of data code to be overwritten. This ensures

that the SAVE file data entries can be successfully

read when used as a DATA file.

"NT": Input integer scalar data code. Values

of 1, 2, 3, or 4 correspond to design

model, command model, truth model, or PI

gains, respectively.
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"NP": Input integer scalar specifying number of

data elements in data vector.

"ND": Input integer vector of dimensions.

"A": Input real vector storing data to be

saved.

READFS (A, ND, NT, IERR)

Routine 'READFS' reads data from the DATA file which

was written by WFILED. It searches the DATA file

for the code of the data set it is to read. If the

data set is found, a call to 'FARRAY' reads the

data. If not found, a message is written and an

error flag set.

"A": Output real vector of array data.

"ND": Output integer vector of dimension data.

"NT": Input integer scalar specifying data set

code (as for "NT" in WFILED).

"IERR": Output integer scalar error flag set non-

zero if data set is not found on DATA

file.

FARRAY (A, ND, NP)

Routine 'FARRAY' reads data sets from the DATA file.

"A": Same as "A" in READFS.

"ND": Same as "ND" in READFS.

"NP": Input integer scalar specifying number of

data elements in data vector A.
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TFRMTX (Xl, X2, NR, NC, ITX)

Routine 'TFRMTX' transfers matrices between storage

locations in cases when one matrix is in full

storage mode and the other is in variable storage

mode. The transfer can be in either direction as

determined by an input argument.

"Xl": Input/output real array in full storage

mode. It is allocated (NR-by-NC).

"IX2": Input/output real array in variable

storage mode. It is allocated (NDIM-by-

NDIM) but contains an array sized (NR-by-

NC). Note that "NDIM" is the row dimen-

sion specification of /MAIN1/.

"INR": Input integer scalar row dimension.

"NC": Input integer scalar column dimension.

"ITX": Input integer scalar controlling the

direction in which the matrix transfer

takes place. For ITX=I, X2 is the input,

Xl is the output, and the (NR-by-NC)

sub-array of X2 is stored in Xl. For

ITX=2, Xl is the input, X2 is the output,

and the matrix Xl is stored as an (NR-by-

NC) sub-array in X2.

MATLST (A, NR, NC, NT, KDEV)

Routine 'MATLST' is used to output arrays in full

storage mode. A name is printed specifying the

array.
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"A": Input real array in full storage mode.

"NR": Input integer scalar row dimension of A.

"NC": Input integer scalar column dimension of

A.

"NT": Input integer scalar with an array name

of three or fewer characters.

"RDEV": Input integer scalar output device number.

NDSCRT (A, N, NTERMS)

Routine 'NDSCRT' computes the number of terms to be

used in computing a state transition matrix using

a series expansion. It uses a method suggested in

Reference 11 (but with a maximum of 30 terms in

the expansion because a temporary vector in DSCRT has

its dimension fixed at 30). The number of terms is

selected to achieve a truncation error of less than

1 .E-6.

"A": Input real array.

"N": Input integer scalar dimension of A.

"NTERMS": Output integer scalar specifying number

of terms to be used in expansion approxi-
AT

mating e--

RQWGTS (W, ND, NP)

Routine 'RQWGTS' is used to enter the diagonal

elements of the quadratic weighting matrices or

noise covariance matrices. Elements are specified

using a single index for the diagonal element and
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the value of that element. The index is tested for

being in array bounds, and negative entries for

diagonal elements are not accepted. For either

error a message is written. A diagonal index of

zero signals that entry is complete. Elements are

tested for proper sign according to argument "NP".

"W": Input/output real array whose diagonal

elements are to be set.

"ND": Input integer scalar specifying the row

dimension of the array within which W is

stored.

"NP": Input integer scalar used to determine

sign test for diagonal elements. If zero,

diagonal elements may be greater than or

equal to zero. If NP is non-zero,

diagonal elements must be positive.

DVCTOR (N, A, V)

Routine 'DVCTOR' extracts the diagonal elements of

an array and stores them in a vector.

"N": Input integer scalar dimension of input

array.

"A": Input real array.

"V"I: Output real vector of diagonal elements

of A.

POLES (A, N, ITYPE, ZMI, ZM2)

Routine 'POLES' computes the eigenvalues of the

input matrix using 'EIGEN' of LIBRARY. For the
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design, command, and truth models it computes the

poles of the continuous-time system model. For the

PI and filter closed-loop systems, it computes the

discrete-time poles then calls 'MAPOLE' to map them

to the primary strip in continuous-time. The con-

tinuous or pseudo-continuous-time poles are printed

along with a title identifying the system.

"A" : Input real array.

"N": Input integer scalar dimension of A.

"ITYPE": Input integer scalar indicating system

represented by A. Values of 1 to 5 refer

to the design, command, or truth models,

the closed-loop PI, or filter systems,

respectively.

"ZMI", "ZM2": Input real arrays used for temporary

storage.

MAPOLE (N, ZR, ZI, T)

Routine 'MAPOLE' is used to map the poles of a

discrete-time system to the primary strip in the

continuous domain (Ref 28). Denote the real (a)

and imaginary (w) parts of a discrete-time pole

as ZR and zI respectively. MAPOLE uses the follow-

ing equations:

2-2Zm = ZR +ZI (A-73a)

S= LOG (z )/T (A-73b)
* e m

w TAN (zi/ZR)/T (A-73c)

77



where T is the controller-filter sample period and

O and w are the corresponding mapped real and

imaginary parts of the pole. These computations

are performed for each system pole.

"N": Input integer scalar number of eigen-

vdlue s.

"ZR": Input/output real vector of real com-

ponents of poles (zR).

"iZI" : Input/output real vector of imaginary

components of poles (zi)

"T11: Input real scalar controller-filter'

sample period (T).

LADDR (NR, I, J)

Function routine 'LADDR' computes the single index

address of an element specified by a (row, column)
address within an array. That index value is

stored in function name LADDR.

"NR": Input integer scalar row dimension of

array within which an address is sought.

"I": Input integer scalar element row address.

Input integer scalar element column

address.

FTMTX (X, Y, NR, NC)

Routine 'FTMTX' transfers one array to storage in

another when both are in full storage mode.
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Input real array whose elements are to

be stored elsewhere.

Output real array containing same ele-

ments as X.

"NR": Input integer scalar row dimension of

x,y.

"NC": Input integer scalar column dimension of

X,Y.

FMMUL (X, Y, NRl, NCI, NC2, Z)

Routine 'FMMUL' computes the product of two matrices.

All matrices are in full storage mode.

"IX"I: Input real array dimensioned (NRl-by-NCl).

Input real array dimensioned (NCl-by-NC2).

"NRI": Input integer scalar row dimension of X.

"NC10": Input integer scalar column dimension of

X and row dimension of Y.

"NC2": Input integer scalar column dimension of

Y.

"Z": Output real array formed as product of

X and Y and dimensioned (NRl-by-NC2).

FTMUL (X, Y, NRI, NCI, NC2, Z)

Routine 'FTMUL' computes the product of one matrix

with the transpose of another. All arrays are in

full storage mode.
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X: Input real array dimensioned (NRl-by-NC).

Input real array dimensioned (NRl-by-NC2).

"NRl", "NC", "NC2": Input integer scalar dimen-

sions.

"Z"l: Output real array formed as product of
TX with Y; it is dimensioned (NCl-by-NC2).

FMADD (X, Y, NR, NC, Z)

Routine 'FMADD' computes the sum of two matrices.

All matrices are in full storage mode. Either

input matrix can be equivalent to the output

matrix.

"X"i
Input real array dimensioned (NR-by-NC).

"Y11: input real array dimensioned (NR-by-NC).

"NR", "NC": Input integer scalar dimensions.

"z"l: Output real array formed as the sum of X

and Y and dimensioned (NR-by-NC).

ZPART (A, NR, NC, ND)

Routine 'ZPART' is used to store zeros in a parti-

tion of a matrix which is itself in full storage

mode.

"A": Input/output real array of row dimension

"ND"; the first element of A is the start-

ing location of the partition to be

zeroed.
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"NR": Input integer scalar row dimension of the
partition.

"NC": Input integer scalar column dimension

of the partition.

"ND": Input integer scalar row dimension of the

input matrix A.

SUBI (A, NR, ND)

Routine 'SUBI' is used to subtract an identity

matrix of appropriate dimension from a square parti-

tion of a larger matrix in full storage mode.

"A": Input/output array of row dimension "ND";

the first element of A is the starting

location of the square partition.

5

"NR": Input integer scalar dimension of the

square partition.

"ND": Input integer scalar row dimension of the
r

input matrix A.

WPLOTF (V, N)

Routine 'WPLOTF' writes a vector to the PLOT file.

"V": Input real vector.

'"N": Input integer scalar dimension of V.

RPLOTF (V, N, IERR)

Routine 'RPLOTF' reads a vector from the PLOT file.

If an "end-of-file" is encountered in the read an

error flag is set.
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"V"I: Output real vector.

"N": Input integer scalar dimension of V.

"IERR": Output integer scalar error flag. IERR

is non-zero if an error occurred.

STRPLT (A, V, NS, NV, NP, NVO)

Routine 'STRPLT' extracts specific elements from

an input vector and stores them in an output vector.

It is used in preparing sets of variables for

plotting.

"A": Output real vector into which elements
are stored.

"V"I: Input real vector some of whose elements

are extracted for storage in A.

"NS": Input integer vector of addresses where

variables are to be stored within A.

"NV": Input integer vector of element addresses

of variables in V which are to be extracted.

"NP": Input integer scalar specifying number of

variables to be extracted from V.

Input integer scalar length of vector V.

It also locates the storage of the time

variable in V (time is the last element

of V).
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PLOTLP (N, M, A, IPSC, ISCL, LPTERM, NDEV, ITITLE)

Routine 'PLOTLP' creates line printer plots. As

many as five dependent variables may be plotted

with respect to a single independent variable.

Every sample of the independent variable is plotted,

and runs lengthwise on the output listing. The

dependent variables are plotted over a field either

50 or 100 print positions in width and may be

unscaled, scaled individually, or scaled separately.

Each dependent variable is plotted with an integer

identifier (1 to 5). The range of the plot is

printed with subdivisions, and if independent

scaling is used multiple ranges are printed and

marked in correspondence to the plot symbol of the

variable to which it pertains. Header comments in

the source listing define all arguments explicitly.

Those descriptions will not be repeated here.

VARSCL (XMIN, XMAX, SCALE, RSPACE, ISCL)

Routine 'VARSCL' is used by routine PLOTLP to

achieve scaling of the plot variables. It can give

either exact scaling so that the full range of the

variable is used or a "nice" scaling with upper and

lower values of the range and the scale increment

all simple numbers. In the former case maximum

resolution is achieved but computation of inter-

mediate values in the range involve numbers that

require many digits to specify. In the latter case,

resolution may be lessened but the computations to

determine intermediate values are simpler. Equal

scaling is achieved by scaling over the combined

range of all variables.
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"XMIN": Input/output real scalar giving the mini-

mum value of the variable.

"XMAX": Input real scalar giving the maximum value

of the variable.

"SCALE": Output real scalar giving the scale size

of each print position in the range.

I"RSPACE": Input real scalar specifying the number

of print positions in the plot range.

* "ISCL": Input integer scalar indicating if exact

or "nice" scaling is to be used. ISCL

non-zero gives "nice" scaling.

A.12 LIBRARY Routines

Many routines of LIBRARY are called by CGTPIF.

Many others are invoked by those which are explicitly

called. For descriptions of all the LIBRARY routines see

Reference 24. Some general considerations in using these

routines will be discussed here.

In essence, the LIBRARY package of routines

assumes that arrays used in its computations are in vari-

able storage mode within larger square arrays of dimension

NDIM (NDIM is an element of /MAIN1/). Because of the

method of array storage in FORTRAN (column-major storage)

in most cases only the allocated row dimension of all

arrays involved in computations must be identical. During

some operations involving matrix transposes, the allocation
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must actually be square for the matrix which is trans-

posed.

Thus, in all execution of CGTPIF other than 'MAIN',

NDIM at any specific time is set to the row dimension of

the allocation in which relevant arrays are effectively

stored for the computations currently using LIBRARY

routines. The variable "NDIMI" of /MAINl/ is simply the

value of NDIM plus one. Both NDIM and NDIMl are used by

the routines of LIBRARY to locate specific elements of

arrays.

Sometimes arrays involved in LIBRARY calls are row

dimension compatible in their existing storage mode. At

other times some arrays must be moved to a variable storage

mode of row dimension equal to that of the largest array

to be used so that all arrays involved in a computation

are effectively stored in arrays of equal allocation dimen-

sions.

CGTPIF does a great deal of array manipulation.

The routines of the LIBRARY rovide very useful capabili-

ties and should be used when possible. However, the pro-

grammer should be very careful to deal properly with array

storage in attempting modification of CGTPIF or calls to

LIBRARY from optional routines. It is easy to be correct,

but it is also easy to be incorrect since programmers

typically are unaccustomed to the manner in which FORTRAN

stores arrays.
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A.13 Array Starting Addresses

Throughout CGTPIF arrays are referenced in terms

of single index addresses. These may be the starting

addresses of arrays within larger vectors or may be

addresses of specific elements of arrays. With the spe-

cific exception of the variables in /DESIGN/, essentially

all variables used in CGTPIF conform to the following con-

vention: variable names beginning with the character "L"

refer to array address indexing. Many such index variables

are of temporary use only and can be evaluated in the con-

text of the source code where they occur.

The starting addresses of all arrays preserved in

Common storage are stored in variables of associated

Commons. These starting address Commons are described

below. In all cases, arrays are stored in the associated

vector storage area in the same order in which their

starting addresses occur in the corresponding address

Commons. In identifying array addresses below, the equa-

tion number in which each array is defined is given in

parentheses to the right of the array name.

/LOCD/ LAP, LGP, LPHI, LBD, LEX, LPHD, LQ, LQN, LQD,

LC, LDY, LEY, LHP, LR

Address Common /LOCD/ is associated with /DSNMTX/

(see Sections A.6.4.1 and A.7.1) and specifies

starting addresses within vector "DM" as follow:
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"LA": A (A-19a)

-a

"LPHI": (P (A-22a)

"LBD": Bd (A-22b)

I'LEXI':(A-22a)

"LPHD": (A-22a)

@'Q: Q (A-3a)

QLN: 2 (A-3b)

I'Q~: Qa (A-21c)

OILII C-ad3c

"LCY": C(A-23c)

-y

"LEY"1: E(A-23c)-y

IHP H (A-24)
-a

"R R (A-24)

ILOCI LPHC, LBDC, LCC, LDC

Address Common /LOCC/ is associated with /CMDMTX/

(see Sections A.6.4.1 and A.7.3) and specifies array

starting addresses within vector "CM" as follow:

"LPHC": t (A-25a)

'LBDC": B (A-25b)
...d

"LC: C (A-26a)

IDC D (A-26b)

/LOCTI LPHT, LBDT, LQDT, LHT, LRT, LTDT, LTNT

Address Common /LOCT/ is associated with /TRUMTX/

(see Sections A.6.4.1 and A.7.2) and specifies

starting addresses within vector "TM" as follow:
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"LPHT": (A2a

-LD": Bt (A-28a)

"LBDT": Bt (A-28b)

"LQDT": tdT (A-2c)

"LHNT": HN (A-7b)

"LTDTl": 7T1 A2b
-DI1": T (A-29c)

"LTNT1": T2 A9b

-NTD":0 (A-7d)

/LCNTRL/ LPXll, LPl, LPCL, LP1, LPHLLD

Address Common /LCNTRL/ is associated with /COROPI

(see Sections A.6.4.3 and A.11.4) and specifies

starting addresses within vector "CTL' as follow:

"LPXll": 7T 1  (A-32)

'LPUl2': 7T1  (A-29b)

"LP22": 4ITC (A-44b)

"ILPHDL: K- (A-40a)

"LBDL": B- (A-30b)

/LRGPI LXW, UDW LPCLLKX8 LK



/LCGT/ LAll, LA13, LA21, LA23, LA12, LA22, LKXA11,

LKXA12, LKXA13

Address Common /LCGT/ is associated with /CCGT/

(see Sections A.6.4.4 and A.11.5) and specifies

starting addresses within vector "CGT" as follow:

"LA1l": A 11  (A-51a)

"LA13":. A 13(A-51c)

"LA21": A 2 A5d

"LIA2311: A 23(A-51f)

"LA12": A 1 A5b

"LA22": A 22(A. 51e)

"LKXA1I": K (A-53a)
-x

"LKXA12": K (A-53b)-x
u

"LKXA13": K(A-53c)EX
n

/LKF/ LEADSN, LFLTRK, LFCOV

* Address Common /LKF/ is associated with /CKF/

(see Sections A.6.4.5 and A.11.7) and specifies

starting addresses within vector "FLT"' as follow

"LEADSN": 4,a(A2a

"LFLTRK": KRA-9

"LFCOV": P (a i (A-58)
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Appendix B

CGTPIF User's Guide

B.1 Introduction

CGTPIF is an interactive program for designing

"Command Generator Tracker" control systems. It provides

three design options: (1) design of a Proportional-plus

Integral (PI) regulator; (2) design of an open-loop (CGT)

or closed-loop (CGT/PI) Command Generator Tracker con-

troller; and (3) design of a Kalman filter. These provide

the component designs for the final controller, to be

implemented as a Command Generator Tracker, with an inner-

loop Proportional-plus-Integral regulator, and a Kalman

filter for state estimation (CGT/PI/KF). Corresponding to

each design option is a set .of routines for evaluation of

the quality of the design. During program execution, any

of the design paths can be pursued in any order and as

often as desired.

This "User's Guide" discusses CGTPIF as an exist-

ing program (as it executes under CYBER INTERCOM) and with

the intention of providing information appropriate to suc-

cessful execution when applied to the user's design prob-

lem. It discusses program operation from the input/output

(I/O) perspective: the specific input and output of each

90



design/evaluation path and the terminology employed in

each input/output item. It also discusses what the user

must do both before and immediately following program exe-

cution. Users interested in more detailed information

about the operation of the program should refer to the

"CGTPIF Programmer's Guide" (Appendix A).

B.2 Preparation Prior to

Program Execution

B.2.1 Determine Dynamics Models. CGTPIF employs

three dynamics models for the system design: a "design"

model, a "truth" model, and a "command" model. It is

necessary that the user determine the dimensions and

parameters of these models prior to execution of the pro-

gram. The specific models needed by each design vary, and

only those needed to execute the design paths of interest

need be known.

At a minimum, the design model must be known in

order to execute any of the designs. The truth model is

required for evaluation of the Kalman filter (to perform a
j covariance analysis) and is optional for evaluation of the

PI regulator or CGT and CGT/PI controllers. The command

model must be known in order to effect either CGT or

CGT/PI designs.

The dynamics models are entered into the program

during execution as needed and under input prompting pro-

vided by CGTPIF. The models will be discussed in detail

in the next section of this user's guide.
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B.2.2 Define Objectives and Specifications.

Before embarking upon design of the controller, the

designer should define: (1) the objectives which are to be

sought, and (2) appropriate specifications and constraints

to apply to the controller. These may be rather loosely

defined initially, then become more specific and firm as

the design progresses.

Objectives will vary with the problem under con-

sideration but might be exemplified by formulation of a

desired controlled output response behavior. For example,

one's objective might consist of achieving decoupled, first-

order responses with specified characteristics for each

controlled output of a given multi-input multi-output

(MIMO) system.

Specifications and constraints derive from the

problem application and from the objectives for the design.

Typical considerations include time-delay, overshoot, and

settling time of the response, and input magnitude and rate

limits.

B.2.3 Determine Appropriate Initial Quadratic

Weights. Execution of the PI regulator design entails

entry of quadratic weights for the optimal cost function.

Such weighting matrices are required for the outputs, the

input magnitudes, and the input rates (Ref 32; see also

Section 3.4.2 of this thesis). For these, only diagonal

elements are required as input since CGTPIF assumes them
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to be diagonal matrices. However, after CGTPIF computes

the resulting augmented state and input magnitude weighting

matrix (equation (A-33)), the user may modify any element

of it to achieve design goals.

Although final selection of appropriate quadratic

weighting values to achieve design requirements is achieved

in an iterative (trial-and-error, hopefully with insight)

fashion, it is possible to make initial choices which are

plausible. A common method for determining initial

quadratic weights involves inverse square weighting of

maximum deviations of outputs and inputs to achieve regula-

tion for an assumed perturbation of the system (Refs 2; 29;

32). For example, the diagonal output weighting matrix

element Yii would be Yi=l./(maximum allowableYi2

Beginning with the initial set of quadratic weights,

the PI design path is executed repeatedly with changes in

the choice of weighting elements until the design is satis-

r factory. CGTPIF provides information during execution

which allows the design to be evaluated and iteration of

the design to be pursued effectively.

For open-loop CGT designs and Kalman filter designs,

preparation consists of defining the various dynamics

models. The open-loop CGT design depends only on the design

and command models. The initial execution of the Kalman

filter design path depends only on the design model (and

truth model for evaluation). Further refinements to either
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design are achieved through modification of the appropriate

dynamics model (command or design).

B.3 Definition of the

Dynamics Maels

Each of the dynamics models entered into CGTPIF

is represented by a set of continuous-time state differen-

tial equations. A summary description of each model is

given here, while more detail appears in Appendix A. The

names used in the equations to follow are exactly those

used by CGTPIF in reference to these same dimensions and

arrays in its I/O. Note that here each name is a single

character, possibly subscripted, while in its I/O, CGTPIF

incorporates subscripts into the name (e.g., At becomes

"AT"). Constraints on the models that are mentioned below

are tested by CGTPIF and if not satisfied, a message is

written to the user terminal and execution is aborted.

B.3.1 Design Model.

*(t) = Axlt + Bu(tl + Exn(t + Gw(t) (B-la)

_(t) = Annt) + G w (t) (B-lb)

x(t) = -Cxt) + D u(t) + Ey nd(t) (B-ic)

z(ti Hx(ti) + H n (ti) + v(ti ) (B-Id)

and

E{w(t)wT (t+t) = Q6( M (B-2a)
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Efwdlt)lt+T}- (n6T) (B-2b)
F--n

EV(tV7 (t. -R6ij (B-2c)

In these equations, x, u, ad, y and z are the system

state, input, disturbance state, output, and measurement

vectors, respectively. In input prompts, CGTPIF refers

to the diagonal elements of the noise covariance matrices

as

_Q: "state noise strengths" (B-3a)

n : "disturbance noise strengths" (B-3b)

R: "measurement noise strengths" (B-3c)

Note that Q, and R are all assumed to be diagonal

matrices. The dimensions of the model are

n = number of system states
r
r = number of system inputs
p number of system outputs

m = number of state measurements

d = number of disturbance states

w = number of independent system noises

w D - number of independent disturbance noises

ZI ~ (B-4)

and the dimensions of the matrices of the model are
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A : n-by-n

B : n-by-r

ix: n-by-d

G : n-by-w

Q : w-by-w

C : p-by-n

_: p-by-r

E : p-by-d

H : m-by-n

Hn : m-by-d

R : m-by-m

An : d-by-d:8n:
I Gn: d-by-wD

2n: wD-by-WD (B-5)

CGTPIF requires that the numbers of design systems

inputs and outputs be equal: r=p. Also, the number of sys-

tem states may not be less than the number of disturbance

states, due to the computational setup used for the CGT

solution (see Section A.7.1). The dimensions n, r, and p

must be non-zero; any of the other dimensions may be zero.

* If m is zero or if w and wD are both zero, the Kalman

A filter design path cannot be pursued. Matrices having

either dimension zero, do not exist and are not entered.
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B.3.2 Truth Model.

.t(t) H Ht (t.) + Tt(t) (B-6b)

(t) = DT-xt(t) (B-6c)

n (t) =T x (t) (-d

and

TE{wt(t )vt(t.t)) R 6(.) (B-7a)
-t - -t 1

Note that 9tand R tare both assumed to be diagonal

matrices. In these equations, an are the truth

model system state, input, and measurement vectors, respec-

tively. The vectors x' and are as defined for the

design model.

The dimensions of the truth model are.

nT = number of system states

rrT = number of system inputs

A mT = number of system measurements

wT number of independent noises driving system
dynamics

(B-B)

and the dimensions of the matrices of the model are
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At : nT-by-nT

At: nT-by-rT

2t : nT -by -wT

_qt: wT-by-wT
Ht• mT-by-n

H: nT

TDT: n-by-n T
TNT: d-by-nT (B-9)

CGTPIF requires that the numbers of inputs and of

measurements for the truth and design model be the same:

rT=r and mT=m. If the number of driving noises (w T) is

zero, evaluation of a Kalman filter design is not pursued

(since a covariance analysis with no truth model driving

noise would not be very informative). Matrices having

either dimension zero, do not exist and are not entered.

B.3.3 Command Model.

(t) = Ax (t) + B um(t) (B-10a)

'a ym(t) =mXm(t) + D m u (t) (B-10b)

In these equations, xm' u' and Xm are the command model

state, input, and output vectors, respectively.

The dimensions of the command model are

- number of model states

r. - number of model inputs

PM - number of model outputs (B-11)
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and the dimensions of the matrices are

_: nM-by-nM

Bm : n.-by-r M

Cm: pM-by-nM

Dm: PM-by-r,4 (B-12)

CGTPIF requires that the number of outputs of the

command and design models are equal: pM-p . Also, the

number of system states of the command model (nM) cannot

be greater than the number of system states of the design

model (). This constraint is due to the setup for computa-

tion of the CGT solution (see Section A.7.3).

B.4 File Usage

In addition to the input/output (1/0) communication

directly with the user terminal, CGTPIF employs four disk

files for I/O purposes. One of these ('PLOT') is for

temporary use by CGTPIF only. The other three filesI ~ ('SAVE', 'DATA', and 'LIST') benefit the user by providing

continuity between distinct executions of the program

(SAVE, DATA) or provide supplementary design output data

01 (LIST).

r B.4.1 SAVE and DATA Files. CGTPIF preserves

information for use in distinct executions of the program

through use of the SAVE and DATA files. During program

execution, the dynamics models as well as the PI regulator

gains (if available) may be written to the SAVE file.
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Following execution, the user may wish to catalog SAVE

as a permanent file. In subsequent executions, CGTPIF may

(at the user's option) read any of the dynamics models or

PI gains from the file named DATA.

Both files are rewound prior to and following

program execution. Letting the abbreviations "BE" and "AE"

mean before and after execution, respectively, typical

-operations on these files include:

1. Catalog SAVE file:

a. BE:REQUEST,SAVE,*PF
AE:CATALOG,SAVE,pfn

b. AE:REQUEST,DUM,*PF
AE:COPYBF,SAVE,DUM
AE:CATALOG,DUM,pfn

2. Attach DATA file:

BE :ATTACH,DATA,pfn

3. Reuse SAVE file as new DATA file

AE:RETURN,DATA
BE:COPYBF,SAVE,DATA (B-13)

None of these operations are required; they are simply

* useful operations in the event the user chooses to employ

the files to streamline repeated executions of a given

design problem. Note that SAVE and DATA are local file

A: names and that the permanent file names are represented

here by the abbreviation "pfn". Other operations (e.g.,

PURGE) and other combinations of operations are possible

as for any files, and the usual rules for these opera-

tions apply here as well. The essential points to under-

stand are that the SAVE file is created by CGTPIF and is an
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output file only, and that DATA is a previously SAVE'd

file under a new local file name and is an input file

only. During a single program execution the two files are

distinct and these roles cannot be changed.

B.4.2 LIST File. During program execution,

extensive design information is output to the LIST file.

After execution is complete, the user may wish to route

LIST to a line printer for listing (or it may be "PAGED"

at the user terminal). The file is rewound before and

after execution. To send LIST to a line printer, the

following command is used after execution:

IiROUTE,LIST,DC=PR,TID=nn,ST=CSB,FID=abc (B-14)

in which "nn" is the identification number of the terminal

to which the file is to be sent (for AFIT, nn=91), and

* "abc" is any three character output banner for the listing.

B.4.3 PLOT File. The PLOT file is used internally

by CGTPIF for temporary storage of the variables generated

by time response evaluations of the controller or filter.

If desired, it may be eliminated following execution using

I the command:

RETURN,PLOT (B-15)
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B.5 CGTPIF Execution

B.5.1 Overview. An important feature of CGTPIF

is that it follows appropriate paths through execution

automatically, prompting the user for input as necessary.

The basic design paths are selected by the user under

prompting, but within a given path, only information needed

to execute the specific design and evaluation is requested

by the program. The user thus does not need any predeter-

mined sequence of command entries to the program, nor are

the commands coded in any way.

Figure B-i gives a general flowchart of CGTPIF.

The first direct input into the program is the sample

period (in seconds) of the digital controller. Each of the

decision blocks (diamond shaped) represent a prompted

request for input to choose the design to be pursued.

Each rectangular block with an alphabetic character ("A"

through "G") in the lower right corner represents a "compu-

tational element" of CGTPIF and is discussed individually.

The block labeled "Establish Design Model (A]"

is a specific instance of the usage of a set of routines

employed in establishing all three of the dynamics models.

The command model is established in the design path of the

CGT controller. The truth model is established just prior
to the controller or filter evaluation blocks. Although

the specific I/O messages differ in content for each model

established by this computational element, the kinds of

*I/O are the same.

102



ENT*ER

SAI4PL9 PRAZOA

I~ EVALLtOLEeoTO[aeA
Ots

pi F

Fg. B-i CGAPL Genra Flw rESO

P& KAL1103



The subsections which follow discuss the I/O of

each computational element. In identifying items of

I/O, reference will sometimes be made to array names and

equations which are specified in the "Programmer's

Guide" (equation references will be in parentheses follow-

ing the array name). All prompts for input define the input

that is being requested and the manner in which the entry

should be given. Since the actual prompts are themselves

understandable, they will not be quoted here. Instead,

flowcharts will be used to show where prompts occur and how

execution depends on user entries. Blocks involving I/O

* will be identified by function: an "I" block will signify

prompted input from the terminal; an "OT" or "OL" block

will signify output to the user terminal or LIST file,

respectively. All output to LIST is separated and iden-

tified according to the computational element which

generated it.

B.5.2 Types of Entries. Required inputs may

entail entry of a decision logic value, a single numerical

or character value, or multiple numerical values for

arrays or vectors. In all cases, CGTPIF prompts the user

with messages identifying the nature of the input requested

* and each prompt ends with the character "

B.5.2.1 Decision Logir. All requests for deci-

sions affecting execution are framed as questions requiring

a YES ("Y") or NO ("N") response. The user entry is read

104



as character input. Execution proceeds according to a

default "YES" assumption: all decision tests assume that

if the answer is not "NO", then it is "YES".

B.5.2.2 Single Entry. Requests requiring single

entry responses always specify the variable requested.

If there are constraints on acceptable input they are

L indicated in the prompt and adherence is tested in the

* program after entry. If the entry is not "valid," a

message is written to the terminal and the prompt is

repeated.

B.5.2.3 Multiple Entry. All requests for entry

of vector or array elements specify the. name of the array

in question and its actual dimensions. Entries for vector

elements include an integer specifying the index of the

element, and a real specifying its value. For most arrays,

all elements may be given values, while for some square

matrices, only diagonal elements may be set. In the usual

case, elements are entered into arrays by specifying two

integers for the [row,column] address and a real for the

value of that element. In cases in which only diagonal

elements can be specified, entry is the same as for vectors,

with the matrix diagonal considered a vector.

As many entries as desired may be made and any

entry can be repeated (e.g., to correct previous erroneous

entries). Entry is terminated by specifying a row index

of zero. Each entry is tested to verify that it lies
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within the (row,column] bounds of the array (vector). If

an index is not "valid", a message is written to the

terminal indicating the error and the initial prompt with

the array dimensions is given again (previous valid

entries are not affected, only the specific invalid entry

is rejected). If an entry is valid, the element value

is set and the next entry is awaited without additional

prompting. For example, if it is desired to set a square

matrix of dimension three to an identity matrix, then

according to whether the specific matrix is to be entered

in (row, column] or diagonal form, entries would be as

follow:

1. For [row,column] entry format

1 1 1. (enter)
t

2 2 1. (enter)

3 3 1. (enter)

, 0/

2. For diagonal element entry format

1 1. (enter)

2 1. (enter)

3 1. (enter)

0/

Items of information may be separated by one or more blanks

or by a comma. These entries set specific elements of the

matrix to non-zero values, where it has been assumed (as

is generally the case) that the matrix was initialized

automatically with all elements zeroed.
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B.5.3 Establishing Dynamics Models V")j. All

three dynamics models (design, truth, and command) are

entered under the control of a single set of routines.

The options for entry and the type of I/O involved for

each is of identical format, but prompts and output employ

terminology specific to each model to identify items of

I/O.

Figures B-2a,b,c give flowcharts of the I/O

* involved in entry of the models. Note that any of the

dynamics models may be entered in any of the following

ways:

1. The dimensions and array elements may be read

from the DATA file.

2. The dimensions and array elements may be

entered from the user terminal as prompted by CGTPIF.

3. The dimensions and array elements may be

* 'i determined by user-provided subroutines.

* These modes of entry are offered by CGTPIF in the order

above with option 3 assumed selected if options 1 and 2

j are declined. If option 1 is selected, the reading of the

model is automatically performed. If the model is found

not to exist in the DATA file, the other options are

offered. For option 3, if the subroutines needed to define

the model are not loaded, options 1 and 2 are offered again.

This logic is illustrated in Figure B-2a.

Prior to entry of the model matrices, all matrix

elements are initialized to zero. Using option 1, all
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array elements are then read automatically from the DATA

file. For options 2 and 3 only the non-zero array elements

must be established.

Figure B-2b illustrates model definition under

option 2. Entry of the dimensions and arrays is according

to prompts by CGTPIF. The dimensions are requested first

by the names and in the order of equation (B-4), (B-8),

or (B-ll), as appropriate. The arrays are then requested,

also by name and in the order of equation (B-5), (B-9),

or (B-12), as appropriate. An array is not requested if

its dimension is zero. Each prompt includes the actual

dimensions of the array according to the model dimensions

previously entered. Elements of arrays are entered by

address, and value by giving the [row,column] address and

element value as a three item input. Entry of a zero row

address terminates entry of the array.

For option 3, each model requires two user-

provided routines of prescribed names, argument lists,

and characteristics. These must be compiled with the main

routine of CGTPIF and a segmented executable object file

created. The "Programmer's Guide" describes the specific

requirements for the subroutines and the necessary pro-

cedure to obtain an executable CGTPIF program. The job

control sequence giving a segmented object file is shown

in Appendix E.

After a model is defined using any of the three

entry options, the user may list any matrix and modify
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any array elements, again under prompting by CGTPIF. If

a modification/list is desired, the names of the model's

matrices are listed at the terminal and the user specifies

the array of interest by name. Elements are entered by

address and value as described previously. Figure B-2c

illustrates the I/O involved in modifying/listing model

arrays.

When the model has been defined to the user's

satisfaction, it may be written to the SAVE file by CGTPIF

if the user chooses. In the course of design iteration,

the truth and command models may be redefined if desired,

but only a single copy of any model may be written to the

SAVE file during a given execution of the program (CGTPIF

will not offer additional opportunities after a given

model has been SAVE'd).

For each model, the discrete-time representation

is computed for the controller sample period specified.

Later computations do not depend on -the continuous-time

dynamics models, so the arrays defining them are not

retained.

Arrays defining both the continuous-tie and

discrete-time models are given in output to the LIST file.

The specific output items, their names, and the reference

equations are listed below for each model (note that

equations (A-*) are from Appendix A):

iii .
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Design Model

Continuous-tims model matrices as listed in

equation (B-5) discretized model matrices as:

"PHI":. 0 (A-22a)

"ED"I: Bd (A-22b)

11QD i: -Qa(A-21c)
d

"HA": H(A-24)
-a

"EXD": E(A-22a)
-xd

"PHN'I:(A-22a)

Command Model

Continuous-time model matrices as listed in

equation (B-12) discretized model matrices as:

"PHM': *(A-26a)

"EBDM": B (A-26b)

01CM": CM (B-12)

DDV: R (B-12)

Truth Model

Continuous-time model matrices as listed in

equation (B-9) discretized model matrices as:

"PHT": (A-28a)

"EDT": B (A-28b)_td
"QDT": _t(A-28c)

in addition, the eigenvalues of the system matrices

of each model (A, Am, At) are computed and output both to

the user terminal and the LIST file. The system model is
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identified by type (design, command, truth). Eigenvalues

of the corresponding discretized system matrices are not

computed.

B.5.4 Controller Setup ("B"). The "controller

setup" routines perform computations needed for the con-

troller designs. No input is required of the user and the

output is to the LIST file only. The output is, the

matrix H: .

"PI": _1 (A-29)

B.5.5 PI Design ("C"). Execution of the PI

design path entails user entry of quadratic weighting

matrices defining the costs associated with output devia-

tions, control magnitudes, and control rates (see

Figure B-- :

"OUTPUT DEVIATIONS": Y (A-32a)

"CONTROL MAGNITUDES": Uy (A-32b)
-y

"CONTROL RATES": U (A-34)-c

For each of these matrices, only the diagonal elements are

entered. On the first execution of the PI design, all

weighting matrices are initialized to zero. Subsequent

iterations preserve the elements of these matrices so

only desired changes in specific weighting elements need

be entered. Weights on output deviations should be

non-negative, while weights on control magnitudes and
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rates should be positive. Entries are tested for positive

or non-negative values as appropriate. If an entry is not

valid, a message is written to the user terminal and that

entry is not accepted.

Matrices Y and U are used to compute a quadratic

weighting matrix on the state deviations (using an aug-

mented state vector composed of system state and control

magnitude perturbations from nominal). This new matrix

is referred to as "X" (equations (A-32) and (A-33)) The

user may then modify any element of X and/or list it atf.

the terminal. Elements entered into X are automatically

* set symmetrically by CGTPIF but the sign of diagonal ele-

P ments entered is not tested. X is not preserved between

PI design iterations, so any desired changes in elements

with respect to their values as determined from Y and U

must be re-entered each design pass.

The diagonal elements of Y, U, and U are printed
-Y -c

at the user terminal and the entire -Y, Uy, U, and X

matrices are output to the LIST file. Next, the regulator

gains and PI gains are computed. The PI gains are printed

at the terminal ("KX" and "KV) and all gains are output

to the LIST file.

The outputs to the LIST file are,

"VY": Y (A-32a)

"UM": U (A-32b)-y
"X" : X (A-33)

"UR": U (A-34)
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"REG/PI GAIN MATRIX--GCS": G* (A-46)

"KX": E (A-48a)

"IKZ" : K (A-48b)

Note that the mnemonics "UM" and "UR" refer to input

magnitude and rate weighting matrices, respectively.

When execution of the PI design computations is

complete, the "controller evaluation" set of routines is

automatically executed. These are discussed in a later

subsection as a separate computational element.

I-

B.5.6 CGT Design ("D"). Execution of the "CGT

design" path requires that a command model be established.

If desired, a new command model can be established during

any iteration of the design. The model is actually

entered using the routines described in Section B.5.3

above ("Establishing Dynamics Models").

If PI gains already exist in the program storage,

then a closed-Iqop CGT/PI design is effected automatically.

If not, the user may elect to have the program read the PI

gains from the DATA file and design a closed-loop CGT/PI

controller. However, if the user chooses not to have the

gains read from DATA or if the gains are found not to exist

on the DATA file, an open-loop CGT design is effected

automatically (by setting PI gains to zero), but only if

the open-loop system is stable. For either open-or closed-

loop CGT design, the matrices Aij (equation A-51) are auto-

matically output to the LIST file.
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Figure B-4 illustrates the I/O, logic, and computa-

tions of the CGT design path. Details involved in entering

the command model are given in Section B.5.3 and are indi-

cated in this figure by a block titled "Establish Command

Model". Note that since the continuous-time representation

of the command model is not preserved, "modification" of

the command model actually entails complete redefinition of

it. In case the command model exists on the DATA file and

only specific elements are to be changed, this can be

accomplished readily by reading the model from DATA and

then modifying individual arrays (as shown in Figure B-2c).

* iIn establishing the command model, I/O is as

pdescribed in Section B.5.3. Additional output to the LIST

file is,

"All": A (A-51a)

"A21": A (A-51d)-21

"A12" A (A-51b)-12

#"A22" A (A-51e)
-22

"A13" A.3 (A-51c)

"A23": A (A-51f)-23
f " .M: K (A-53a)

KX

"KXU": K (A-53b)
u

"KXN": K (A-53c)-x
n

The controller gains ("KXM", "KXU", "KXN") are also

printed directly at the user terminal. Note that arrays

A13 A23 and K exist only if disturbance states are' --Xn
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specifically modeled in the design model (!!d of equations

* (B-la,b)).

When execution of the CGT design computations is

complete, the "controller evaluation" set of routines is

automatically executed. These are discussed in the next

subsection.

*B.5.7 Controller Evaluation ("E"). A single set

of routines performs the controller evaluation for both the

PI and CGT designs. For the PI controller, the poles of

the closed-loop discrete-time system matrix 4P 6CL (equation

(A-44)) are computed and mapped into the primary strip in

the continuous-time domain (the z-plane poles are not

listed in output). These mapped closed-loop poles are

printed both to the user terminal and the LIST file. The

primary evaluation tool for both controllers is a time-

response simulation. For the PI regulator, the response

is taken for non-zero initial conditions (IC's) on the

states; for the CGT controller the response is given for

a step input on any of the command model's inputs. In

either case, the system dynamics can be propagated using

the design model or truth model state transition equations.

2 Time response runs may be run repeatedly for a specific

controller design.

The I/O, logic, and computations involved in the

controller evaluation are shown in Figure B-5. Decision

blocks labeled "CGT" test for the type of controller being
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evaluated (CGT or PI). Decision blocks labeled "LTEVAL"

test if the truth model is being used to propagate system

dynamics (if not, the design model is being used).

The first prompt of the controller evaluation com-

putational element asks if the evaluation is to be con-

ducted with respect to (WRT) truth model dynamics. If

yes, the truth model may be established or modified (if

previously established) in the manner described in Section

B.5.3 above. Note that, since the continuous-time repre-

sentation of the truth model is not preserved within

CGTPIF, "modification" actually entails complete redefini-

tion of the model. In the case that the truth model exists

on the data file and only specific array elements are to be

modified, it is convenient simply to read the truth model

from the DATA file and modify matrix elements as shown

in Figure B-2c. If the truth model had been established

previously and no modification to it is desired, the

existing discrete-time representation of the truth model

is used. The design model is used to propagate system

dynamics if the truth model evaluation is not selected.

For the CGT evaluation, the first input prompt

is for the index of the command input vector to which a

step input is to be applied, and the magnitude of that

step (only one command input is allowed at a time).

CGTPIF tests the input index for validity (within vector

length bounds); if it is invalid the prompt is repeated.

If the index is zero (or negative) the input is not
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accepted and the user is queried as to whether time-

response runs are desired. If no time-responses are to be

run, the controller evaluation routines are exited; other-

wise, the prompt requesting command model input specifica-

tion is repeated. If the CGT controller response is to be

run, initial conditions on the system states may be

entered. If the design model is used for evaluation and

disturbance states exist in the model, they may be given

initial conditions also.

For the PI evaluation the first input prompt is

for IC's for the system states. The states that are

actually given initial values are those of the design or

truth model, according to the model used for propagation

of dynamics.

Initial conditions are entered for either con-

troller in the same manner. Entry is of the index of the

state within its appropriate state vector (design or truth

model, or disturbance state vectors) and its initial

value. Tests and termination of entry are as described

ti in Section B.5.2 for multiple entries.

J Time-response plots are of the "line printer"

type and are output both to the terminal and to the LIST

file. As many as two plots, each with as many as five

dependent variables, may be printed at the user terminal.

CGTPIF prompts the user to specify the number of variables

for each of the two plots (the user is to enter two

integers). If the user enters non-positive integers for
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both plots, then a prompt queries the user as to whether

time-response runs are desired. If no time-responses are

to be run, the routines are exited. Note that when no

plots are selected for terminal printing, none are output

to LIST either and no time-responses are simulated.

In the case that plots are to be printed at the

terminal, a series of prompts allow the user to specify

exactly which variables shall be included. Variables are

selected by specifying a name of the vector type for that

variable and its index in two entries for each variable.

The names of the vectors are:

"X": system state vector

"Y": system output vector
" system input vector

* "U": system input vector

"D" : disturbance state vector

"M": command model output vector

The system state vector is that of the design or truth

models, according to the model used for propagation of

dynamics. For example, the pair of entries "U" and "1"

specifies that element 1 of the input vector U is to be

plotted (note that "entry" includes a carriage return).

The input prompt includes these definitions and includes

4only those variables relevant to the controller being

evaluated. The model output and disturbance state vectors

are only offered for CGT evaluations, and for the latter

also only if the disturbance states are explicitly modeled
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and the design model propagates dynamics of the time-

response (since for the truth model the system state

vector includes all disturbance states which are con-

sidered to act on the system). Each user entry is tested

for valid (and relevant) name and for valid index. Prompts

specify the plot number and output number for each

requested entry.

The user next is prompted to enter the time dura-

tion for the simulation. However, the duration actually

simulated may be adjusted by the program: a time span that

is the nearest integer multiple of 100 times the controller

sample period is selected. Plots to the LIST file include

the entire time span and use 100 equal time interval samples.

Plots to the terminal include 50 time samples selected as

follows: if the time duration specified by the user is less

than 50 times the controller sample period, the samples

plotted are the first 50 time samples from the simulation;

otherwise the entire time span is included in 50 equal-

interval samples. Thus, for example, with a controller

sample period of .02 seconds a user specified time dura-

tion of less than 1. second would yield plots to the

terminal running from time=0. to time=l. and with .02

seconds between each sample; plots to the line printer

would include samples at the same interval but extending

to time=2.

After completing the time-response simulation, a
prompt requests a title for the plots and prescribes the
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field width available for the entry (50 characters). The

title is applied to all plots generated from the single

simulation.

Plots are printed with the independent (time)

axis running vertically along the length of the output

page with the origin at the top. Each sample time is iden-

tified along the left margin of the plot. The dependent

axis is horizontal. Each variable is marked with an

integer from I to 5 at each sample time. Note that since

only one character can be printed in each location of the

plot field, when two or more variables would occupy a

single print position at a sample time, only the symbol

of largest value (1 to 5) is printed. For plots to the

terminal, if a model output is among the variables of a

plot, then all variables in the plot are plotted over a

single scale range to facilitate comparisons of actual

and desired output responses. In all other cases every

variable plotted is scaled over its own range independently

in order to achieve greater resolution for each in the plot

field. The scale(s) are listed along the bottom of the plot.

Rotation of the output page through 900 in a counter-

clockwise sense gives the usual abscissa-ordinate orienta-

tion. Terminal plots are 50 print positions wide; plots

j Ito LIST are 100 print positions wide.

Plots of all relevant variables in a time-response

simulation (all states, inputs, and so on) are auto-

matically output to the LIST file if terminal plots are
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requested. Five variables are included in each plot. A

list identifying all the variables by type and index for

each plot number and plot symbol is written to LIST prior

to the plots.

When all plots have been printed, a prompt queries

the user as to whether additional time-response runs are

desired. If more are wished, the entire set of plotting

options is repeated and the same controller may be evalu-

ated under different conditions and/or different variables

may be plotted. If no additional simulations are wished,

the controller evaluation routines are exited.

B.5.8 Kalman Filter Design ("F"). The Kalman

filter design routines compute the steady-state Kalman

filter gains for the design model. Figure B-6 shows the

I/O, logic, and computations involved. Note that the first

execution of the filter design path bases its filter com-

putations on the noise strengths specified upon initial

entry of the design model. In subsequent executions, any

of the noise strengths may be modified. The noise strengths

are entered as vectors of the matrix diagonals (only

diagonal elements may be modified). The matrices are,

"STATE NOISE STRENGTHS": Q (B-2a)

"DISTURBANCE NOISE STRENGTHS": ( {B-2b)

"MEASUREMENT NOISE STRENGTHS": R (B-2c
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Prompts for state or disturbance noise strengths are given

only if the design model specifies driving noises for the

respective process dynamics. Negative noise strengths are

not accepted.

In each execution of the filter design path, the

entire noise strength matrices and Kalman filter gain

matrix are output to the terminal and LIST file. However,

only the diagonal elements of the noise strength matrices

are printed at the terminal.

Following computation of the filter gains, the

Kalman filter design routines are exited. Execution pro-

ceeds automatically to the filter evaluation computational

element described in the next subsection.

B.5.9 Filter Evaluation ("G"). Figure B-7 shows

the I/O, logic, and computations of the filter evaluation

routines. Execytion of the filter evaluation requires that

the system truth model be established, since the covari-

ance analysis is performed with respect to the truth model.

Comments in Section B.5.7 dealing with establishing the

*truth model apply equally in this set of routines, except

that here use of the truth model is not optional.

Evaluation begins with computation of the eigen-

* values of the system-filter matrix -KF (equation (A-61)).

As for the closed-loop PI regulated system, the discrete-

time eigenvalues are mapped to the primary strip in the

continuous-time domain. These mapped poles are printed
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at the user terminal and output to the LIST file (the

z-plane eigenvalues are not printed).

The primary evaluation tool applied to the filter

design is a steady-state covariance analysis. The covari-

ance matrix of the estimation errors of the filter using

measurements of the truth model dynamics is propagated for

50 filter (controller) sample periods. Samples are

coincident w!.th the filter's sample times and the total

number is fixed at 50. At each time sample the standard

deviations of these "true" errors are computed as the

square-roots of the diagonal elements of the error covari-

ance matrix P (equation A-72). The filter's own computed

error covariance matrix is P of equation (A-58), which-a

V because of the steady-state assumption, is constant for all

time samples. Taking the square-roots of the diagonal

elements of P then gives the filter's estimate of thei -a

standard deviations of its errors in state estimation.

Plots for each state are output to the LIST file showing

the "true" and "computed" RMS errors for the 50 time

samples. A title may be entered to be applied to all

plots from the covariance analysis. In addition, the

A1 :"true" and "computed" RMS errors at the final time sample

are printed at the terminal.

This completes the filter evaluation. A new

filter design may then be pursued, or any other design

option may be selected.
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B.6 Program Messages

A variety of messages may be printed at the

terminal and/or output to the LIST file during program

execution. Some are purely informational, are clear in

V- their meaning, and provide no essential insight into

progress of the design or possible difficulties in program

execution. Such messages are not discussed here. The

remaining messages relate to errors or potential design

difficulties and are considered in categories of memory

allocation, dimensional errors, or computational problems.

B.6.1 Memory Allocation. CGTPIF uses vectors in

named Commons for array storage. These vectors are dimen-

sioned in the main routine and a variable in the Common is

set to the value allocated. These vectors are then par-

titioned within CGTPIF to store individual arrays. Before

storing arrays into each vector in Common, the storage

needed is computed according to the appropriate equation

listed in equations (A-15a) through (A-15j). In the case

of temporary storage vectors, at each point in execution

at which a new allocation is needed, the particular equa-

tion defining that need is used. If more memory will be

needed in a vector than has been allocated, a message is

written specifying the name of the Common and the neces-

sary minimum allocation. A typical message of this type is,

"INSUFFICIENT MEMORY /SYSMTX/, NEED: nnnn"
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in which the Common /SYSMTX/ has too little storage for the

problem and 'nnnn' is the dimension required for the vec-

tor in that Common. For the vectors containing the

dynamics models, the model with insufficient memory is

identified by name. The Commons for the design, truth,

and command models are /DSNMTX/, /TRUMTX/, and /CMDMTX/,

respectively. After printing such a message to the user

terminal, execution is aborted.

In its existing form, CGTPIF will have sufficient

vector allocations to deal successfully with problems of

*many different combinations of dimensions and with system

* matrices in the range of 10 to 20 states. Since the pro-

gram will not allow allocated memory to be exceeded, it is

reasonable to attempt any given problem and let the pro-

gram either deal with it successfully, or let it write the

appropriate memory message if the problem cannot be accom-

modated. Section A.9 of the "Programmer's Manual" dis-

cusses the steps necessary to obtain a new CGTPIF with

different memory allocations.

B.6.2 Dimensional Errors. As each of the dynamics

models is established, or just prior to computations which

assume relations among the design and command system and

disturbance state dimensions (CGT computations), the dimen-

sional constraints mentioned in Section B.3 are tested.

In terms of the dimension notation of equations (B-4),

(B-8), and (B-11) the constraints are
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Design Model: par and n>d

Truth Model: rTr and mT m

Command Model: pM-p and n>nM (B-16)

If such a constraint is not satisfied, a message is written

to the user terminal identifying the problem and execution

is aborted. When the constraint affects only a specific

* : section of code, or if redefinition of the model (command

or truth) can resolve the error, then only the affected

. execution path is aborted. In other cases, execution is

aborted completely.

Other dimensional tests are made in the Kalman

filter design and evaluation computational elements. For

filter design, it is necessary that the system state and

disturbance state driving noise dimensions not both be

equal to zero, and that the number of measurements be

non-zero. These are constraints on the design model:

i i or

D
i j and

m > 0 (B-17)
"1 t

For filter evaluation, the number of driving noises for

the truth model must be non-zero:

w >0 (B-18)
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since in this case, the system is deterministic and the

covariance analysis would not provide much useful informa-

tion for evaluation of the filter's performance. If any

of these constraints are not satisfied, a message is

written to the user terminal identifying the problem and

execution of the filter design-evaluation computational

elements is aborted.

B.6.3 Computational Problems. In certain of the

computations, characteristics of the particular design

problem may be identified as having potential impact on the

attainment of design objectives. Messages identifying

these characteristics may be considered informational.

jother messages describe computational problems that are
immediately fatal.

In computing the _n matrix of equation (A-29), a

pair of messages may be generated to the LIST file:

"PI MATRIX IS RANK DEFECTIVE"

and

"nr X nc MT RANK mr"

in which "nr" and "nc" are the row and column

dimensions of _n and "mr" is its rank. The first message

is also printed at the user terminal. The equations

employing _I assume it to be an ordinary matrix inverse.

If it is rank defective, the matrix pseudo-inverse is

computed instead. Execution of the program continues
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since the discussion of Reference 32 concerning the U

matrix suggests that useful results may still be obtained

through use of the pseudo-inverse.

Solution of the Riccati equations for the PI

* regulator (equation (A-43)) and the Kalman filter (equa-

* !tion (A-58)) is achieved using an iterative algorithm

(Ref 24) which may generate messages of information or

* " fatal error. The informative message for the PI is,

1"RICCATI SOLN IS PSD--RANK mr"

in which "PSD" means positive semi-definite. For the

Kalman filter the corresponding message is,

"OBSERVABILITY MATRIX IS nr X nc OF RANK mr"

in which "nr", "nc", and "mr"I are the row, column dimen-

sions and the rank, respectively. These messages convey

the same information concerning system observability. The

message is written in the case of the PI Riccati equation

only if the solution is positive semi-definite (rank

defective). Both messages are output to the LIST file

only.

For both the PI and filter Riccati equations fatal

error messages are identical:

"RICCATI NON-CONVERGENT IN nn ITERATIONS"

or

"RICCATI BLOW UP AT ITERATION nn INITIAL N = mm"
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in which "nn" is the iteration counter at the occurrence

of the error and "mm" is the value of a variable set

internally and used in achieving initialization of the

iterative sequence (the internal variable is not available

for modification by the user). The first message indi-

cates that the sequence of iterates did not converge. The

second message may indicate numerical difficulties or

uncontrollability (unobservability) of the system of the

PI (filter) equations. Both messages are output to the

LIST file only; a system error exit routine is then called

which writes "EXIT" to the user terminal and aborts program

execution. Note that in the event of such an abort, the

local files SAVE, DATA, and LIST are not rewound auto-

matically.

In computing the CGT controller gains an error may

occur in solving for the matrix partitions A1 or A

(see Section A.11.5 of the "Programmer's Guide"). If the

iterative refinements to these solutions do not converge

to within the established tolerance (l.E-6), then the fol-

lowing message is written both to the terminal and the LIST

file:

"SOLUTION ERROR FOR 'A' (CGT) AFTER 3 ITERATIONS = nnn"

in which "nnn" is the Euclidean norm of the refining

matrix solution (residual) at the last iteration. The

message is considered to be informational, and execution

proceeds normally. However, in case the value
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of the residual norm is large compared to the convergence

tolerance, the CGT design solution can be expected to be

invalid.

B.7 Running CGTPIF

This "User's Guide" assumes that a segmented exe-

cutable object file of CGTPIF exists. If it does not,

refer to the "Programmer's Guide" for instructions for

obtaining such a file.

For an existing CGTPIF object file the following

commands must be entered in INTERCOM to run the program:

CONNECT, INPUT, OUTPUT
ATTACH,CGTPIF,pfn
CGTPIF

in which 'pfn' is the permanent file on which the object

file is cataloged. CGTPIF will then execute as described

in Section B.5. Additional commands before and after

execution may be appropriate according to one's intended

use of the various local files which CGTPIF employs during

execution. Refer to Section B.4 for suggested commands

relevant to file usage.
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Appendix C

CGTPIF Input/Output Listing

The input/output (I/O) listing given here is from

a single execution of CGTPIF. It shows two PI regulator

designs, a CGT/PI design, and a Kalman filter design for

design model AFTI(S3,A2,G3). The regulators and controller,

as well as the filter covariance analysis, are all evalu-

ated with respect to the truth model AFTI(S4,A2,G3). The

controller design is for the pitch-pointing decoupled

control law. Details concerning the design, truth, and

command models employed, as well as information about the

results of these designs, are given in Chapter VI of this

study.

The I/O shown is that obtained directly at the

user terminal during execution. The listing is complete

and in order, but it has been divided into individual

page-sized portions for presentation. During execution,

A additional extensive output was placed on the 'LIST' file.

The LIST file's output is not reproduced here. It extends

as continuous listing over about 45 pages and uses an out-

put field width of 125 character positions. However,

Section C.2 gives a brief description of the output appear-

ing on LIST for this single execution. Refer to the
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"Programmer's Guide" and the "User's Guide" for descrip-

tions of the terminology used to refer to the various

* items of I/O given here.

C.1 CGTPIF Terminal I/O Listing

C.1.1 Introduction. For this design, both the

i design model and the truth model are obtained from a 'DATA'
file. The command model is of low dimension and is entered

directly.

In the listing below, all user entries are iden-

tified with an arrow symbol to the immediate right of each

entry. Prior to and following program execution, INTERCOM

prompts for input are given by "COMMAND-". Within program

execution entries occur in tw ways: (1) when the entry

is on the same line as an input prompt, the entry is

bounded on the left by the symbol ">"; (2) in case of

multiple entries for a single prompt, entries after the

first include the entire line that is identified.

Portions of I/O are discussed within individual

numbered paragraphs. Each portion of listing begins on a

new page. The specific portions of listing are identified

by a number in parentheses at the top center of the page

where it begins, and these numbers correspond to the para-

graph numbers below.

C.1.2 Summary of Input/Output.

(1) Following "LOGIN", the executable object file

'CGTPIF' is attached, as well as the 'DATA' file containing
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the design and truth models. Note that 'CGTPIF' and 'DATA'

are local file names while 'THESIS' and 'DESIGN' are the

corresponding permanent file names. Next, permanent file

space is requested for the local file name 'SAVE'; the SAVE
I "

file will be generated during subsequent execution of the

program. The "CONNECT" command defines the user terminal

as the device that communicates through the FORTRAN

standard 'INPUT' and 'OUTPUT' files. Program execution

is initiated with the simple command "CGTPIF", which loads

the local file CGTPIF and begins execution at its starting

address.

(2) Program execution begins with output of an

identifying header which includes the current date and

time (obtained from calls to system real-time clock

routines). The first user entry is the sample period of

the controller. Next, the design model is established.

The design model is read from the local file DATA. As

described in Chapter VI of this thesis, two different con-

trollers were designed for this aircraft dynamics model and

for each there were different definitions of the output

matrix C of the design model. Thus, the C matrix is listed

in order to verify that the data corresponds to the pitch-

pointing design case. Since the C matrix is correct, no

changes are made to its elements (imediate entry of

"0/" when requested to enter element address and value).

The design model is then written to the SAVE file. The

141



poles (eigenvalues) of the design model (A matrix) are

automatically computed and printed.

(3) The controller design path is then pursued,

and a PI regulator design is chosen. Quadratic weights of

200. on outputs 1 and 2, and of 1. on input magnitudes and

rates are entered. Weights of the X matrix (augmented

state and input magnitude weighting matrix) are not modi-

fied. The PI gains K and K are computed and printed.-x -Z
(4) The evaluation of the PI regulator is chosen

to be with respect to the truth model dynamics. The truth

model is read from the DATA file, is not modified, and is

written to the SAVE file. The poles of the truth model

(At matrix) are automatically computed and printed.

(5) Evaluation of the PI regulator begins with

computation and printout of the continuous-time mapped

poles of the closed-loop system matrix (_ 6CL) In prepara-

tion for a time-response simulation of the closed-loop

system, initial conditions of 0.01 and -0.01 for states 1

and 2 of the truth model are entered. One plot of 2

variables is printed at the terminal. The variables are

selected as outputs 1 and 2 (y(1 ) and y(2)). A time dura-

.i 'tion of 0.9 seconds is selected, which will give a plot

including all of the first 50 controller sample times and

will run for a duration of 1. second at the terminal (here

T=0.02, and 50-T=1.). An identifying title is specified

for the plot. In the resulting plot the time-axis is

vertical, the dependent axis is horizontal, and plot
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symbols 1 and 2 identify the plotted vatiables in order

as specified above. Note that a rotation of the plot

through 900 in the counter clock-wise sense gives the usual

abscissa-ordinate orientation. Both plot variables are

scaled individually over ranges of (-0.0090 to 0.0110) and

(-0.0050 to 0.0200), respectively.

(6) No additional time-responses are wished, and

the design of the PI regulator is repeated. In this itera-

tion, the quadratic weights are not modified (weights on

outputs, input magnitudes, and input rates are preserved

throughout program execution, unless specifically modified).

However, the X weighting matrix is modified to include a

weight of 50. on state 3 of the design model (weight is

value of element X(3,3)). Note that the X matrix is com-

puted anew each iteration from the weighting matrices on

the outputs and the input magnitudes. Thus, modifications

made explicitly to X are not preserved between design

i
iterations. The PI gainsK and K are computed and

* ,printed.

(7) Evaluation of the PI regulator is again taken

with respect to the truth model, which is left as it had

been previously defined. The evaluation proceeds in the

same way as described in Paragraph (5) above. Note the

improved damping in the responses of both outputs.

(8) No additional time-responses are selected.

Having achieved a satisfactory PI design, a CGT/PI design

is pursued next. The command model is entered directly
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from the terminal. It is defined as a 2 state, 2 input, and

2 output model. The matrix A is diagonal with values of

-5. for both entries; the matrix B is diagonal with--m

values of 0.1 for both entries; the matrix C is diagonal-m

with values of 1. for both entries; finally the matrix

D is the zero matrix. The command model is written to-m

the SAVE file. The poles of the command model (AM matrix)

are computed and printed. The equations defining the CGT

controller are solved and the CGT/PI feedforward gains

K and K are computed and printed (since the design
-X m  u
model does not include disturbance states, the matrix K

-X
ndoes not exist).

(9) The CGT/PI controller is evaluated with

respect to the truth model, as previously defined. A time-

response simulation is run for a step of magnitude 1. on

command model input 1 (Um(1) = unit step), and no initial

conditions are set on the truth model states. Two plots

are printed to the terminal of 4 and 2 variables each.

The first plot includes (pairwise) outputs 1 and 2 of the

truth model and command model (plot symbol 1 is y( 1),

2 plot symbol 2 is Ym( 1 ), and so on). The second plot

includes states 5 and 6 of the truth model (these are the

control actuator states). Since the first plot includes

outputs of the command model, a single scale range is

applied to all four variables in the plot. A time dura-

tion of 0.9 seconds is specified (which gives the first

50 controller samples again), and a title is entered.
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The resulting time-response plots follow.

(10) No additional time-responses of the CGT/PI

controller are requested. The Kalman filter design path

is then selected. Since this is the first execution of the

Kalman filter design, the noise strength matrices (.Q and

R) specified in the existing definition of the design model

are used to compute the Kalman filter gain matrix (note that

in subsequent iteration of the Kalman filter design path,

the user may modify the diagonal elements of the noise

strength matrices). The diagonal elements of the noise
strength matrices and the entire filter gain matrix are

printed. Next, a title is entered to apply to the plots

I of state estimation error standeard deviations (output to

LIST file only). The final values of true and filter-

computed RMS errors for the design model state estimates

are printed.

(11) The filter design is not repeated, nor are

any of the other designs. Upon terminating execution, the
PI gains determined previously (Paragraph (6)) are written

to the SAVE file. The command "FILES" gives a listing of

existing files. Note that files SAVE, LIST, and PLOT have

been generated automatically during program execution.

- The SAVE file (containing the design, truth, and command

model data as well as the PI gains K and Kz) is then

cataloged for future use (as a DATA file). The already

existing (attached) DATA file is then returned and the

just created SAVE file is copied to the local file named
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DATA. Next, the LIST file is sent to a line printer for

listing. Finally, the SAVE file is returned, making

re-execution of the program feasible (since SAVE had been

made a permanent file, it could not be written to in sub-

i f sequent executions). In a subsequent execution, the

various dynamics models and the PI gains would be avail-

able from the new DATA file and a new SAVE file would be

created (if desired). However, in this case there is no

repeated execution of the program, and the user enters a

"LOGOU" from the system.

SI46
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AS!) Ca4PUTER CENTER -INTERCOA 5.1

SYSTE4 CSAI DATE 11/19/31 ME~4 09.48.56.

PLEASE LOGIN
LOGIN,D790477 K:J-
I£ZZZZE NTER PASSWORD-

*11/19/81 LOGGED IN AT 09.49.34.
WITH USER-ID PD
EQUIP/PORT 16/051

COAAAiND- ATTACH, CGTPIF. THESIS <-
* AT CY= 100 SN=AFFDL

cO:4lAND- ATTACH, DATA, DESIG4. CY=i K-
C0Q4I4AND- REQUEST, SAVE, *PF <--

K' f CCY4AND- CONNECT, INPUT, OUTPUT ~
CO4.AND- CGTPIF <~-
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(2)

* * *CGTPIF * * *

PROGRX. TO DESIGN A CQ4MAND GENERATOR TRACKERI USING A REGULATOR WITH PROPORTIONAL PLUS IN~TEGRAL CONTROL
AND A KALMAN FILTER FOR STATE ESTIMATION.

* * * CGTPIF * * *

DATE 11/19/81

TIALE 09.50.33.

ENTER SA'4PLE PERIOD FOR DIGITAL CONTROLLER >.02 --

READ DESIGN MODEL FRQ, 'DATA' FILE (Y OR N) >Y <-

MODIFY MATRIX ELEMENTS (Y OR N) >Y <-
A B EX G Q C DY EY H uN R AN GN QW

ENTER MATRIX Nh4E )C <-
LIST M4ATRIX TO TERMINAL (Y OR N) >Y <-

C MATRIX

1.030 0. 0. 0. 0. 0.

0. 0.

, 1.000 -1.000 0. 0. 0. 0.
O . 0.

ENTER I,J AND M(I,J)--(O/ WHEN COAPLETE) 2 BY 8 >0/ K-

MODIFY MATRIX ELEAENTS (Y OR N) >N

i ~ WRITE DESIGN MODEL TO 'SAVE' FILE (Y OR N) >Y <-
DESIGN MODEL WRITTEN TO 'SAVe' FILE

A POLES OF DESIGN AATRIX

1.3497279E-03 +J( 0. )
1.2965361E+00 +J( 0.

-3.6658859E+U0 +J( 0.
-2.000000E+01 +J( 0. )
-2.0000000E+01 +J( 0. )
-4.9251429E-01 +J( 0. )
-2.2564490E+ 1 +J( 0.
-4.9251429E-01 +J( 0.
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(3)

CONTROLLER DESIGN (Y OR N) )Y

DESIGN REG/PI (Y OR N) >Y <j-
ENTER WEIGHTS ON OUTPUT DEVIATIONS: 2

ENTER I AND QW(II)--(0/ WHEN COMPLZTE) )l 200. <-
S2 200..-, o/ C*-

ENTER WEIGHTS 0:4 CONTROL MAGA4ITUDES: 2
ENTER I AND QW(I,I)--(O/ WiiEN 0CU4PLETE) i 1.
2 1.<-

ENTER 4EIGdTS ON CONTROL RATLS: 2
ENTER I AND QW(I,I)--(0/ WdEN C0.PLETE) >1 1. 1. -

* t 2 1. '~

0/

Y IMATRIX

200.0
200.0

U1 MATRIX

1.000

1.000

MODIFY ELE, IENTS OF 'X' MATRIX (Y OR N) >N ,,

UR MArRIX

1.000
: : 1. 000

KX 4ATRIX

-24.12 19.93 -1.127 1.096 1.3509E-J2 .19
75 -67.99 2.4492E-02

1 81.36 -d3.53 .5534 1.1577E-02 1.034 -.83
15 280.0 6.538dE-03

KZ MlATRIX

-2.925 3.051

149



(4)

CONTROLLER EVALUATION WRT TRUTH dIODEL (Y OR N) ,Y ,-

I READ TRUTH MODEL FROM 'DATh' FILE (Y OR N) )Y -

MODIFY MATRIX ELEENTS (Y OR N) >N <--

WRITE TRUTH MODEL TO 'SAVE' FILE (Y OR A) Y 
TRUTHI MODEL WRITTEN TO 'SAVE' FILE

POLES OF TRUTH MATRIX

-1.7562050E-02 +J( 1.3462117E-01)
-1.7562050E-02 +J( -1.3462117E-01)
1.24d6051E+00 +J( 0. )

-3.9022986k+00 +J( 0. )
-2.00000UOE+01 +J( U.
-2.0O0000OUE+O1 +J( 0. )
-4.9251429E-01 +J( 0.
-2.2564490e+01 +J( 0. )
-4.9251429E-01 +J( 0.

I
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i (5)

POLES OF REGPI MATRIX

r -4.2981128E+00 +J( 0.

-1.0352022E+01 +J( 1.4079013E+01)
-1.0352022E+01 +J( -1.4079013E+01)
-2.44722b0E+01 +J( 0. )
-l.9b12664C+01 +J( 0.

-5.4a60340E+01 +J( 0. )
-5.4957660E+01 +J( 0. )
-2.2564493E+01 +J( 0.

-4.9251461E-01 +J( 0. )
-4.925l39oE-0l +J( 0. )

ENTER STATE AND IC VALUE (0/ TER4INATES): 9 )1 .01 :-
2 -.01 <..o/ <3-
2 PLOTS OF 5 VARIABLES MAY BE PRINTED AT THE TEKMINAL -- SPECIFY NUIBER
FOR EACH (N1,N2) >2 0 <j-
ENTER OUTPUTS BY TYPE AND INDEX IN 2 ENTRIES--TYPES ARE
STATE : 'X'
OUTPUT : 'Y'
INPUT : 'U'

PLOT 1
OUTPUT I >Y ..-

> 1

iI ITUENTER T14L DURATION FOR RESPONSE, IN SECONDS >.9 --

----------- ENTER TITLE IN GIVEN FIELD ----------- +

AFTI(S3,A2,G3) PITCH POI-NITING PI < -
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AFTI(S3.A2.G3) PITCH POINTING PI

0.00 + + + + + 1 2
.02 + + + + + 21 +
.04 + + + + 2+ 1 +
.06 + + + + 2 + 1 +
.08 + + + 2 + + 1 +
.10 + + + 2 + +1 +
.12 + + 2 + + 1 + +
.14 + + 2 + + 1 + +
.16 + + 2 + +1 + +
• 18 +: : : =+:2: % +: : : :1:+: : : : :+: : :+
.20 + +2 + 1 + + +

.22 + 2 + 1 + + +

.24 + 2 1+ + + +

.26 + 2+ 1 + + + +
•2 8 + 2+ 1 + + + +
.30 + 2 1 + + + +

- .32 + 2 + + + + +
.34 + 12 + + + + +
.36 + 1 2 + + + + +
.38 +: 1 :2: : : : : : : : : : ; : : : : : - : : ; : :
.40 + 1 2 + + + + +

.42 +1 2 + + + + +

.44 1 2 + + + + +

.46 1 2 + "- + + +

.48 1 2 + + + + +

.50 1 2 + + + + +

.52 1 2 + + + + +

.54 +12 + + + + +

.56 + 2 + + + + +

.58 +2 1::+:4:... :+:::: :::- :+:.....:..+

.60 +2 1 + +. + +

.62 +2 1 + + + + +

.64 +2 14+ + + + +

.68 +2 + 1 + + + +

.70 +2 + 1 + + + +

.72 +2 + 1 + + + +

.74 +2 + 1 + + + +

.76 +2 + +1 + + +

.78 +:2: : ; : : : : : - = I : ; : : : : : : : : : : :

.80 + 2 + + 1 + + +

.82 + 2 + + 1 + + +

.84 + 2 + + 1+ + +

.86 + 2 + + +1 + +

.88 + 2 + + +1 + +

.90 + 2 + + + 1 + +

.92 + 2 + + + + +

.94 + 2 + + + 1 + +

.96 + 2 + + + 14+ +
.9d +: : 2 : : - • : : : : : ; : : : : : : ; : : : :

1.00 + 2 + + + 1+ +

SCALE 1 -.0090 -. 0050 -. 0010 .0030 .0070 .0110

SCALE 2 -.0050 -.0000 .0050 .0100 .0150 .02uu
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(6)

MORE TIME RESPONSE RUNS (Y OR N) )N <t-

CONTROLLER DESIGN (Y OR N) 3Y <-
DESIGN REG/PI (Y OR N) -Y <-
ENTER WEIGHTS ON OUTPUT DEVIATIONS: 2

V ENTER I AND QW(I,I)--(O/ WHEN COiPLETE) '0/ .-

ENTER WEIGHTS ON CONTROL MAGNITUDES: 2
ENTER I AND QW(II)--(O/ WHEN CO.4PLETE) >/ <_
ENTER WEIGHTS ON CONTROL RATES: 2
ENTER I AND QW(I,I)--(O/ WiEN CQ4PLETE) ,0/ .-

Y MATRIX

200.0
200.0

U4 AATRIX

1.000
1.000

MODIFY ELEAENTS OF 'X' MATRIX (Y OR N) >Y Y15.
LIST 'W MATRIX TO TEk4IkNAL (Y OR N) >N
ENTERI,J AND M(I,J)--(0/ WdLEN COY4PLETE) 10 BY 10 >3 3 50.o/

UR MATRIX

1.000
1. 000

KX AATRIX

-38.87 19.69 -1.687 1.282 5. 7119L-02 .18
51 -65.16 2. 9332E-02

78.03 -83.61 .4227 5.5022L-02 1.045 -.83
24 280.0 7.6946E-03

KZ NIATRIX

7.0350E-03 -.8717
-2.929 3.068
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(7)

CONTROLLER EVALUATION vJRT TRUTH MODEL (Y OR N) )Y <.-
AODIFY TRUTH 4ODEL (Y OR N) >N

POLES OF REGPI MATRIX

-2.9827602E+01 +J( 4.2991187E+01)
-2.9827602E+01 +J( -4.2991187E+01)
-1.9616067E+01 +J( 0.
-5.4953050E+01 +J( 0. )

*-2.2652939E+OU +J( 0. )
-7.3649808E+01 +J( 0. )
-3.8538426E+OU +J( 0.
-2.2564493E+01 +J( 0.
-4.9251429E-01 +J( 2.3149970-09)
-4.9251429E-01 +J( -2.3149970E-09)

ENTER STATE AND IC VALUE (0/ TERIINATES): 9 >1 .01 -
2 -.01 .-o/
2 PLOTS OF 5 VARIABLES '%AY BE PRINTED AT THL TER1I4,AL -- SPECIFY NU:IBER
FOR EACH (NI.N2) 2 0 ...-
ENTER OUTPUTS BY TYPE AND INDEX IN 2 ENTRILS--TYPES ARE
STATE : 'X'
OUTPUT : 'Y'
INPUT : *U'

PLOT I
OUTPUT I )Y

OUTPUT 2 >Y

ENTER TI4N DURATION FOR RESPONSE, IN SECONDS >.9 <-I--------- ENTER TITLE IN GIVEN FIELD-----------

AFTI(S3,A2,G3) PITCH POINTING P1' -
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AFTI(S3,A2,G3) PITCH POINTING PI'

0.00 + + + + + 2 1
.02 + + + + + 2 1+
.04 + + + + 2 1 +
.06 + + + 2 +1 +
.08 + + + 2 + 1 + +
.10 + + 2 + I + + 4
.12 + + 2 1+ + + +
.14 + +2 1 4 + + +
.16 + 12 + + + + +
.13 +: -1:2; :+: :+: . :+: : : :+: : : -
.20 +1 2 + + + + +
.22 + 12 + + + + +
.24 + 2 + + + + +

.26 +2 1 + + + + +

.28 +2 1 + + + + +

.3o 2 1 + + + + +

.32 2 1+ + + + +

.34 2 +1 + + + +

.36 +2 + 1 + + + +

.38 +2 : :+: 1 : : :+.: : :4-: : : :4-: : : :4-

.4 +2 + I + + + +

.42 +2 + 1 + + + +

.44 +2 + I + + + +

.46 +2 + 1 + + + +

.4 + 2 + 1 + + + +

.52 + 2 + 1 + + + +

.52 + 2 + 1 + + + +

.54 + 2 + 1 + + + +

.56 + 2 + 1 + + + +

.56 +2 +- + + +

.GO + 2 + 1 + + + +

.62 + 2 + 1 + + + +

.64 + 2 + 1 + + + +
.66 + 2 + 1 + + + +
.60 + 2 + 1 + + + +
.70 + 2 + 1 + + + +
.72 + 2 + 1 + + + +
.74 + 2 + 1 + + + +
.76 + 2 + 1 + + + +
.78 +: 2 : : : : : 1 : : : : : : : : : : : : : : : ; :

.80 + 2 + 1 + + + +

.82 + 2 + 1 + + + +

.84 + 2 + 1 + + + +

.86 + 2 + 1 + + + +
.8a + 2 + 1 + +. + +
• 90 + 2 + I + +- + +
.92 + 2 + I + + +- +
.94 + 2 + 1 + + + +
.96 + 2 + 1 + + + +
.9gd +: :2: :+ : : :+ :+ : : : : : :.

1.00 + 2 + 1 + + + +

SCALE 1 -.0050 -.0020 .001O .0040 .0070 .01D

SCALE 2 -.0030 .0020 .0070 .0120 .017o .0220
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~(8)

MORE TIME RESPONSE RUNS (Y OR N) N -

CONTROLLER DESIGN (Y OR N) oY ."-

DESIGN REG/PI (Y OR N) ),N

DESIGN CGT (Y OR N) >Y <.-

READ COA4AND 1O1DEL FRO4 'DATA' FILE (Y OR N) >N .. -

E'NTER C.'4AANi) AODEL FRQi TER-IINAL (Y OR W) >Y <-"
ENTER NA -2
ENTER RA >2 -
ENTER PA >2 .-

ENTER K-

ENTER I,J A)ND A(IJ)--(O/ litiEN COAPLET-) 2 BY 2 >1 1 -5. ' -

2 2 -5. .-o! <i-

ENTER BM
EOTER I,J AND A (I,J)--(0/ Wq... & .PLETE) 2 BY 2 : 1 .1 -

22.1 <-o/ <

ENTER C4
ENTER I,J AND -(I,J)--(O/ ,jAIEN COiPLETE) 2 BY 2 >1 1 1.
2 2 1. -

E 4TER 4

EoER I,J Alh) !4(I,J)--(O/ WJEN CO-IPLTE)- 2 BY 2 >0/ <.-

MODIFY .IATRIX ELZ.4ENTS (Y OR N) >N

WRiITL CO AIAND >.4ODEL TO 'SAVE' FILE, (Y OR Wi) >Y -
COA.4AN) IODEL WRITTEN4 TO 'SVi ' FILL

J I-POLES OF CO.:AND .AATlIX

-5.OOOOOOOE+o0 +J( 0.

I -5.OouoUOOE+uO +J( 0.

1 KX4:4ATRIX

-9.482 -14.92
-18.47 61.13

KXU .4ATRIX

-. 1181 -.1711
-2.14a6E-02 .7287
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(9)

CONTROLLER EVALUATION WRT TRUTH 4O L (Y OR N) >Y <l-

MODIFY TRUTH M4ODEL (Y OR N) >N -

ENTER MODEL INPUT AND STEP VALUE ;1 >1 1. <--

ENTER STATE AND IC VALUE (0/ TER.INATES): 9 >0/ ...-

2 PLOTS OF 5 VARIABLES .4AY BE PRINTED AT THE TERIIAAL -- SPECIFY NUIBER
FOR EACH (NI,N2) >4 2 ..-
ENTER OUTPUTS BY TYPE AND INDEX IN 2 IENTRIES--TYPES ARE
STATE : 'X'
OUTPUT 'Y'
INPUT : 'U'
AODLL

PLOT 1
OUTPUT 1 >Y c -

>1
OUTPUT 2 > .-

>1 <L
OUTPUT 3 >Y ..-

>2 .-

OUTPUT 4 >4

PLOT 2
OUTPUT 1 >X

>5 .-

OUTPUT 2 >X .-
>6 . -

EATER TI,4E DURATION FOR RESPONSL, IN SECONDS >.9 .--

----------- ENTER TITLE IN GIVEN FIELD ----------- +I,: AFTI(S3,A2,G3) PITCH POINTING CGT/PI -

:
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iAFTI(S3,A2,G3) PITCH POINTING CGT/PI
0.00 + 4 + + + + +
.02 +34 2 + + + + +
.04 +341 2+ + + + +
06 341 +2 + + + +
.08 3 4 1 + 2 + + + +
.10 3 4 +1 2 + + + +
.12 3 4 + 1 2 + + +
.14 34 + 1+2 + + +
.16 34 + + 1 2 + + +
.18 3:4::: ;+: :+: 2 :+: : . : : :+
.20 3 4 + + 21 + + +
.22 3 4 + + 2 1 + +
.24 +34 + + 2+ 1 + +
.26 +34 + + +2 1 + +
.28 +34 + + + 2 1 + +
.30 +34 + + + 21 + +
.32 +34 + + + 2 1 + +
.34 +34 + + + 2 1 + +
.36 +4 + + + 21 + +
.38 +:4 : : :+: :4: : : : :+: :21 :+: : : ; :+
.40 + 4 + + + 21 + +
.42 + 4 + + + 2 + +
.44 + 4 + + + 21 + +
.46 + 4 + + + 21 + +
.46 + 4 + + + 2 + +
.50 + 4 + + + 21+ +
.52 + 4 + + + 2+ +
.54 +4 + + + 2+ +
.56 + 4 + + + 21 +
.58 +;4: :: : :+ : ::: : : : 21: : ; :+
.60 + 4 + + + 2 +
.62 + 4 + + + 2 +
.64 + 4 + + + 21 +

.66 + 4 + + + 21 +

.68 + 4 + + + 21 +

.70 + 4 + + + 21 +

.72 + 4 + + + 21 +

.74 + 4 + + + +2 +

.76 + 4 + + + +2 +

.78 +:4: : : :+: : : : :+: : : :+: : : :+2 : : :+

.80 + 4 + + + +2 +

.82 + 4 + + + +2 +

.84 + 4 + + + +2 +

.86 + 4 + + + +2 +

.88 + 4 + + + +2 +

.90 + 4 + + + +2 +

.92 + 4 + + + +2 +

.94 +4 + + + +2 +

.96 + 4 + + + +2 +
.98 +:4: : : :+: : : : :+: : . : :+2 : : :+

1.00 + 4 + + + +2 +

SCALE -.0010 .0040 .0090 .0140 .0190 .0240
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AFTI(S3,A2,G3) PITCH POINTILNG CGT/PI

O.O0 + + + 1 + + 2 +
.02 + 1 + + + + 2 -
.04 1 + + + 2 +
.06 + 1 + + + 2 + +
.08 + +1 + +2 + +
.10 + + 1 2+ + +
.12 + + + 21 + + +
.14 + + + 2 + 1 + +
.16 + + + 2 + +1 +

;~.18 +: : : :+ ." : .2: : : ;+: : : :+: : 1 :+
.20 + + 2+ + + 1 +
.22 + + 2 + + + 14+
.24 + + 2 + + + 1 +
.26 + + 2 + + + 1 +
.28 + + 2 + + + +
.30 + 2 + + +1 +
.32 + 2+ + + +1 ++

.34 + 2 + + + +1 +

.36 + 24. + + 1 +.3 +:: :2: .+: :: :+: : . : ;+. : 1 +: ; +

.40 + 2 + + + + +

.42 + 2 + + + 1 +

.44 + 2 + + + 1 +

.46 + 2 + + + 1 +

.43 + 2 + + + +1 +
S.50 + 2 + + + +1 +
.52 + 2 + + + + 1 +
.54 + 2 + + + + 1 +
.56 + 2 + + + + 1 +
.58 +: 2 : : : : : : : : : : : : : : : : : : : : : ; :
.60 + 2 + + + +1 +
.62 + 2 + + +1 +
.64 + 2 + + + +1 +
.66 + 2 + + + + +
.68 + 2 + + + +1 +
.70 + 2 + + + +1 +
.72 +2 + + + +1 +
.74 +2 + + + +1 +
.76 +2 + + + +1 +

° ~~.78 +2 : : : : : : : : " : : : : : : : : ; : : : ; : :
.80 +2 + + + +1 +
.82 +2 + + + + i+
.84 +2 + + + + 1+
.86 +2 + + + + +
.88 +2 + + + .1 ++
.90 +2 + + + + i+
.92 +2 + + + + 1+
.94 +2 + + + + +
.96 +2 + + + +1 +.9d +2 : : : :+: : ; : :+: : : . :+: -. : : :+:l: : +

1.00 +2 + + + + 1 +

SCALE 1 -.0490 -.0290 -. 0090 .0110 .0310 .0510

SCALE 2 -.1400 -.1100 -.U800 -.0500 -.02U0 .01J0
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I MORE TIME RESPONSE RUNS (Y OR N) >N

CONTROLLER DESIGN (Y OR N) )N <.-

F FILTER DESIGN (Y OR N) -Y <-

Q !IATRIX

1.000

R MATRIX

4. 7600E-06
1.2200E-05
3.2200E-05

KF MATRIX

4.4140E-02 1.6200E-U3 9.9108E-O3
1.8745E-02 -2.6979E-02 -7.9667E-03
6.7043E-02 -2.7613E-03 4.5761E-U2
-6. 7 59vE-92 4.6574E-9U 3.4539E-91
2. 2655E-91 -1. 56USE-89 -1. 1575L-90
-1.736 34.37 1.423

-1.4593E-02 .23d36 6.92O5E-U3
-3.4765E-02 2.068 -. 162U

MODIFY TRUT1I MODEL (Y OR N) >1N <.I POLES OF FILTER .ATRIX

-2.1736993E+01 +J( O. )
-i. 5709760E+01 +J ( 0.K -2.3546296E+00 +J( 1.2811239E+O0)! I-2.3546296L+03 +J( -1.2811239L+oo)

-2.0443847-01 +J( 0.
-2.0000UlE+01 +J( 0. )
-2.OOOO01E+01 +J( 0. )

------------ ENTER TITLE IN GIVEN FIkLD-----------
AFTI(S3,A2,G3) KAL.IAN FILTER <-

t
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FINAL RMS ERRORS TRUE - 4.5419573E-04
(STATE 1) CO4iPUTED = 4.7274126E-04

FINAL R4S ERRORS : TRUE - 4.9942017E-04
(STATE 2) CO4PUTED = 5.3129189L-04

FINAL R-4S ERRORS : TRUE = 1.2360643E-03
(STATE 3) CQ4PUTED = 1.2525561E-03

FINAL RI4S ERRORS - TRUE = 2.4935549E-92
(STATE 4) CO:4PUTED - 1.1593964E-83

FIliAL RAIS ERRORS : TRUE = 6.3567084E-92
(STATE 5) CQIPUTED = 3.8855083E-83

FINAL RI4S ERRORS - TRUE = 2.7082759E-01
(STATE 6) CO4PUTED = 3.0440785E-01

FINAL M%1S ERRORS : TRUE = 1.865374UE-03
(STATE 7) COAPUTED = 2.0952099E-03

FIN4AL RS ERRORS ; TRUE = 2.0671737E-02
(STATE 8) C(Y1PUTED = 2.2234662E-02
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(11)

FILTER DESIGN (Y OR N) >N <*-

END DESIGN RUNS (Y OR N) )Y <3-
REG/PI GAINS WRITTEN TO 'SAVE' FILE

PROGRAI EXECUTION STOP
STOP
U64700 4AXIMUY4 EXECUTIJN FL.
28.723 CP SECONDS EXi;CUTION TIAE.

C014..AND- FILES <-

--LOCAL FILES--
PLOT LIST SAVL *CGTPIF *DATA

$INPUT $OUTPUT
CO..4AblD- CATALOG, SAVE, DATAPP '..-

NEWCYCLE CATALOG
RP -0U8 DAYS
Cr ID- D790477 PFN=DATAPP
CT CY = 002 SN=AFFDL 00000768 'ORDS.:

C014AAND- RETURN,DATA <-
CO49AL4D- COPYBF,SAVE,DATA .-
C(X4sAND- ROUTE, LIST, DC=PR, TID=91, ST=CSB, FID=.LL <-

Cc3 '4AND- RETURN, SAVE -
Cax 14AID- LOGOUT .-
CPA 28.999 SEC. 23.631 ADJ.
10 118.959 SEC. 36.211 ADJ.
CRUS 75. 329
CO;ANECT TI:4E 0 IIRS. 24 AIN.
11/19/81 LOGGED OUT AT 10.13.32.

1

4
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C.2 CGTPIF Output to LIST File

Output written to the LIST file for this execu-

tion is identified according to the corresponding para-

graph description of Section C.1.2 above. Paragraphs 1

and 11 are not discussed here since they do not involve

program execution and therefore do not affect the LIST

file.

(2) The first output is a heading with date and

time identical to that printed at the terminal. Next the

sample period of the controller is identified. A series of

outputs related to the design model then follow; these are

identified by a heading "DESIGN MODEL". First the matrices

defining the continuous-time representation are printed.

For this case the matrices are A, B, G, Q, C, D , H, and R.

As for the terminal output, the eigenvalues of A are then

printed. Finally, the matrices of the discrete-time

representation are printed: 4, Rd' 9ad and H a An addi-
. - d -a °

tional output is the matrix H_ under a heading of "CON-

TROLLER SETUP".

(3) Output relating to the design of the PI

regulator is identified by a heading of "REG/PI DESIGN".

The quadratic weighting matrices Y, Um, X, and UR are

printed, followed by the regulator gain solution G*.

Finally, the PI gains Kx and K are printed.

(4) The truth model description is identified by

the heading "TRUTH MODEL" and in this case lists the

matrices of the continuous-time system first:
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At 01 t Qt, Ht, 1! T DT The eigenvalues of the

matrix A are then printed. The matrices of the discrete-

time representation are listed: - B
Z- td , td

(5) Outputs due to the controller evaluation

routines are identified by a heading of "CONTROLLER

EVALUATION" and begin with the mapped eigenvalues of the

closed-loop system with PI regulator, -C Time-responses-6CL

are output in three plots of 5, 5, and 3 variables each.

Each plot is labeled with the title specified by the user;

the plots include 101 time samples extending from 0. to 2.

seconds at the controller sample period of 0.02 seconds;

the plot width is 100 character positions in width. The

first plot is of states 1 through 5 (xt(1) to x t(5)) of

the truth model; the second plot is of states 6 through 9

(xt(6) to xt(9)) and output 1 (y(1)) of the truth model;
i 

=t

the final plot is of output 2 (y(2)) and of inputs 1 and 2

(ut(l) and ut(2)) of the truth model.

(6) The second execution of the PI regulator

design provides the same outputs as described in Para-

graph (3) above.

(7) The controller evaluation of the PI regulator

design provides the same outputs as described in Paragraph

A I (5) above.

(8) The CGT/PI design path begins with definition

of the command model, with relevant output identified by

the heading "COMMAND MODEL". The matrices A m , B m, C m,

and D of the continuous-time system are printed, followed-m
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by the eigenvalues of the matrix Am . The discrete-timematries %m' Bmd --

matrices t, B , C, and D are then printed. Output

due to the CGT design computations is identified by the

* heading "CGT DESIGN". The matrices All' A21, A12 , and

A22 are printed. Finally, the CGT/PI control gain matrices[-22
K and K are printed.
-x --X Umu

(9) The evaluation of the CGT/PI controller is

identified by the header "CONTROLLER EVALUATION". Three

plots are printed with 5, 5, and 5 variables. Character-

istics of these plots are the same as described in Para-

graph (5) above. The first two plots include the same

truth model states and outputs as before. The third plot

includes output 2 (y(2)), and inputs 1 and 2 (u t(1) and

ut(2)) of the truth model, and outputs 1 and 2 (ym(1) and

ym(2) ) of the command model.

(10) Output due to the Kalman filter design

routines is identified by the heading "FILTER DESIGN",

F and includes the noise strength matrices Q and R and the
Kalman filter gain matrix KF . The output of the filter

evaluation routines is identified by the heading "FILTER

EVALUATION". First, the mapped poles of the filter-system

matrixKF are printed. During the covariance analysis

the full error covariance matrix is printed at each time

j: sample (in this case, from 0. to 1. second each 0.02

seconds). Finally, 8 plots are printed: each plot includes
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the standard deviations of the "true" and filter-computed

estimation error for each design model state for 50 con-

secutive time samples taken at the controller/filter sample

period.

1

r
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* Ajpendix D

CGTPIF Program Listing

The following program listing includes all routines

of CGTPIF as discussed in the "Programmer's Manual".

Routines of the 'LIBRARY' object file are not listed (Ref 24).

CGTPIF is composed of three parts: a 'MAIN' routine,

an optional set of user-provided routines, and a large set

of invariant routines referred to as 'CGTPIF SUBS'. In

this listing, routines 'DSND', 'DSNM', 'TRTHD', and 'TRTHM'

are optional routines that are of standard type (see Sec-

tion A.10 of Appendix A); routines 'ACDATA', 'GUSTS', and

'TBLUP1' are optional routines that are auxiliary to the

standard optional routines. These optional routines are

used in establishing the design model AFTI(S3,A2,G3) for
the pitch-pointing controller, and the truth model

AFTI(S4,A2,G3), both as described in Chapter VI of this

report. Routines 'CGTXQ' through 'VARSCL' constitute the

set of routines CGTPIF SUBS.
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PROGRAM MAIN(INPUT64OUTPUTa'4,LISTu64,
I. SAVF=649OATAz6l.,PLOTvB49
L TAPE~SINPUTTAPE6=OUTPUTTAPE25uSAVTAP5!lsDATA,
2 TAPE99uPLOTqTAP~16zL!ST)
CO'4MON/MAIt4±/NDIMNOINICOq1 (4 .)
COMMON/MA !N2/COtI2 %
COPHON/INOU/KIN vKOUT*KPUNCH
COM4MON/FILVrS/I(SAV-7,KOATAKPLOTKLISTKTERNI COMMICN/SYSM4TX/NV SM9 SM t21Z5)
C0IMHt4/7t*TK.LNVZt4,7'41 (12253
COrn4ON/ZNTX2/ZM 2 (1253)

r COMMON/DSNMTX/NVD*4,NOOYNOEYDM(175')
COM3N/cArf0TX/N VCM9 NEWCM9NOC 9Ct(22S)
00414ON /TP.UMgTX/NV T,4TM(725)
COtIMON/CoNTROL/NVCTL 9CTL (90,'
COI404N/CFEGP/NVRP1,ZPI (5753

* COMMON/CCGT/NVCGT*CGT(eCt)
* COt4MON/CKFINVFL',FLT(69')

NVSM=E125
%-VZMz1225
NV 4=1.75 t
NVCMIZZ5
NV'tl=.725
NVCTLz 9%. I
NVlRPIz57
NVCGT=4Z.t
NVCrLTr69t

KSAVEZ2
IKATA5'n
t(PLO0!:99
KLIST=16

STOP

C END 46IN

EN:
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SUBROUTII DSND(ND)
014IENSION NOWI

NO(2):2

a NO(I)=2

N49 (6) = j
N!n(71=1

C END SUM1OUTIME DSND

'I.D

K ~SUeROUTrNE OSN4I(AB, EX, GQC, DY, EY, 'HN,,ANGNQN)
DIMENSIONAC.3 B82 C28)G8,Y(,),(,)R(,)
DATA GRAVTYDEGTRDPI/32.174,.C1745329,9.e.4i592?/
CALL ACDATA(LE-VEL,VTALT, ALPNAZAZADZOZUZOEZOF,
i PMA,PMAOPMQ ,PMUPMOEgPMOF,XA,XA[jXQ,XUXOE-,XDF,
2 TEDLX9,-SPAN)

if ALPHAQ=OEGTRO$ALPHA
U =V7'COS(ALPHAR)
W-'=T*SIt.'ALPHAcl)

A(2,±il-GPAVTYOSIN(ALPHAR) /Ut
A(292)=ZA
A(29,!1oio+ZQ
A(?92)=PA
A(397)DtPf)

A (2,8) =ZO
A(3 ,7)=PMA
A ( 398)PMO

t A (2,4) :ZDr
A (2,5) ZCF
A (3,4) uPtOE
A(395)PMF
A(494)=-TE
A(5,S)z-TE
84491)=TE
8(592)=TE
CALL GUSTS(LEVELALTSLUSLWSIGU,SIGW)gi A(696)=-VT/SLW
A(7,61z(l*SOqRT31eSIGW4SORT(-A(66))/SLW
A(797)=A(696)
A (8vP) z-VT*PI/4* /8SPAN
A(69S62-A(StS1'A(796)
A(9q7)=-A(S,8)8 A(?97)
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G (?$SIGW*SQRT( 3**VT/SLU) /VT

C(2971=1*

R4(393)=32.5

C4.0).7E-

SURROUTINE TRTHD(ND)
DIMTNSION NO(±)

Nfl(3)=3
ND(4)=l
r-T UPN

C END SUBROUTINE TRTHD
END

StJ9RfUTIIJE TQT4M(4TBTCTOT,HTRTTDTTNT)

DATA GRAVTY,OEGTRDPI/!2174*31745!293..+.Ls27/
CALL ACGATA(LEVE-LVTALTALPHAZA ,ZAD, ZCZUZCEZOP,

I PMAPMADPOmoPMU,PMOEPM!3FXAgxADXQ,XUADEXDF,
2 TrE,OLXp9SPAN)

1~ALPHAR=OEGTRO'ALPHA

Ul zVT*COS (ALP HAR IW" *VT* SIN (ALPijAR)



AT (392)=PA
AT (3,31=PMQ
AT 4394 1P4U
AT (4,± I=-GRAVTY*COS (ALPMARl
AT(492)=XA
ATt4,33=XO-WC
A'T(494)=XU
AT (295)=70E
AT(296)=ZOF
AT ( 3,5 )MOE
AT (396)=P OF
AT (495 )XDE
AT(4961=XDF
AT(595)=-TE
AT(bvb)=-TP
AT(2#8)=Zt
AT (2,91ZO
AT (39,8 )PMA
A" (399)FPMO
AT (498)=X A
AT(499)=YQ
CALL GUSTS(LEVELALTSLUSLWSIGUSIGW)

* A"'(797)=- VT/SLW
AT(8,7)=(1.-S2RT(%e))*SIGW#SOQFT(-AT(7,7))/SLW
AT (8.8) =AT (79 7)
A? (9,9 )=-VTPI/./BSPAN
AT(9v7)=-AT(9,9)'AT(8,7)
AT (99 812- AT(999) *AT (e 8)I. GT (7)1.o
GT(e)=sIGWSQRTt39VT/SLW) /VT

GI G(9) =-AT (999) *GT (8)
QTio
Of) 2' 11,9g
A? (*,I)2AT (2,1) RZAO

* A'(!,1)=AT(3,I)+PAO*AT(29I)
* zr ATI4,Il=AT(49I) XAD*AT(291)

3T (5*il='E
13'r(6q2 )=T F

HT (29211.o

MT (3,3=I

RT (i1)=4s?6E-6

RT (2,Z21.122E-5

TOT (2,2ka±.
T)T (3, 33=1.

TO)T (5,6) ZI.
TOT (6, 731.1
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TOT (Fe 8101o
TOT 4899)zlo
RTTURKN

C END SUBROUTINE TPTH41
END

SOU TIN ATALEV ~ AP~ZiZ~Z*~vD-ZFII AAD4,ZQUDEZDFXvADXXvXtDF
2 TE 11'SAN

5 WPITE if5

w~RTA*vEKL,'9 EEA ~W=ITE(KLV2±2
W~r0%qITE('LT91~ VATALPHA
WzITE V7S1~3
WRITEIKLIT,1IA) ZZDZOUZOD

wqIAKLISTA,1MA13 ~PA,,PO,~MPMDEM

frI-!TE(KLIAT,11.C)XA,~EXADXUXO,

WIT(NENT9EQ.) GOETOEL

WRTEC. S9172

WRITE 1'Z7S, "3

WRITE(KIST975

RO AN= Y
DLX=R1A(3*T79UBUECEL8VL(123)~

1: OT("ETE RllVLCIY LTTD, N LPA
13 RT(R A AC Q ZZEZN~

1?. CQIT 1--6AMC MM, OMO

READ'172

W;-- 1



Ir5 FORMAT(* ENTER XA, XAO, XQ, XU, XDE, XOF 21)
11'6 FORMAT(" ENTER TIME CONSTANT FOR ELEVATOR 3,)
IP7 FORMAT(" ENTE4 DISTANCE FROM CG TO ACC=LEkq04ETER '

IDS FCRMAT(* ENTER WING SPAN p")
1"9 FORMAT(6XI1)
W2. FORMAT (6 ( 6X±PEi5.T))

RETURN
C END SUBROUTINE ACOATA

END

SUBOUTINE GUSTS(LEVE-LALTSLUSLWSIGUSIGW)
DIW?'NSICN ATR81(41,AT982(Li),ATIB3(4),SIGTi~(4D',SIGT2(4),SIGT3(4)
DATAA0±2.25.1.,f~.
DATA
DATA A TRB 3/2, 30095 aC 92 a 0 0 7,.
DATA SITGT 1/4 *5 95 * 95 o 9.e/

jDATA SIGT2/15 i.1%,lip e f,
DATA SIGT1/±Z21,2lq ,.9/

DATA lTi,1IT2,1T3/lt1i/
IF(ALT-i75'..) 5915915

5 IF(ALT-±1,j.) 5,1u,±,,It8 ALTT=ALT
GO TO le

I" A L TT= I J1
* 1 SlGW=?*5*FLOAT(LEVErLl

j SIGU=4-../(.177.8.23E-4"ALTT)'10.4
SLW=ALTTISL U=AL T TSIG U* 3
SIGU:SIGU3ISIGW
GO TO 11

15 SLU=175'0

IF(LEVEL-2) 17918416
115 CALL T LUPI(ATRB3,SIGT3,4,IT3,ALTSIGU)

GO TO 19
I? CALL T3LuriAATRB±,SIGTi,4,IT±,ALT,SIGU)

GO TO 19
18 CALL TBLUFIIATRB2,SIGTZ,4,1T2,ALTSIGU)
19 SIGW=SIGU>114f RETURN

C END SUBROUTINE GUSTS
END
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SU9QOUTINE TSLUPIIXtYgNIXPXPoYP)

* !F(1Xr) 15,15.1
I IF(IXP-N) 18910,5

5 rXPzN
* GOTO 18

15 IF(IPIXP 51291892r
i I wpzrw1

je YD)Y(IXP)
RrTUCN

29L IF(I'(PaN) 2191895
*21 IXPPiIKP.1

22 IF(XP-X(IXPPL)) 2593C93"
25 VD=Y(IXOJ 4(XP-X( IXPI) /(X(IXPPIP-XUIXPJ I (Y4IXPD1J-Y(IXP)I

r-.TUCN
3f IXPzIXPPI

GO TO 2
C SND SUBROUTINS TBLUDL
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SUBROUTINE CGTXO
COMMON/MA!H1/NDIMoNDI~itCOI(1)
COMI4ON/MAIN2/C0M2 (1)
COMMNt/INOUiKIN, KOUYKPUNCH
COMON/DESIGN/NVCOMTSAMPLFLPILFLCGTLFLKFLTVALLA3OiT
COI'MON/FILES/KSAVE, KDATAKPLOT, 'LISTKTr-RM
COMMON/ SYSMTX/NVS4q SM (i3
CO!IM3N/Zt4TXl/NVZNZ41tl)
^%14MON/ZMTYZIZh2 (1)
CO'lNON/NDIMD/NNDN'RDNP0,NM09D.N),NW0,NWOONPLDNWPNWOvNNPA
COMMON/LOCO/LAPPLGPLP141 LBCLEXLPJ4DLO LONjLQDL,LOYLEYLHP, LR
COtIMON/OSNMTXINVDMNODY,NOEYDM(i)
C0VMON/NDIMC/NNC N".CNPC
C014ON/LOCC/L0HC ,L90C LCCLC
COMMOIJ/Cm DTX/NVC4, NE WCM9 NOD C 9CM W
C3MmON/Nt0IMT/NNT,NL'TqNT9NWT
COMMON/LOCT/LP4TLBOTLQDTL HTLRTLTDT, LINT

* ~COMM1ON/Tr UMTXfNVTIITM (J)
COMMON /LCNTRL/LPII, LFI±2,LPI21,LPI229L PH ZL sLBOL
C'MMON/C0NTROL/NV0TLCTL(i)
CO!AMON/LFF GPI/L XDWLUfWgWLPHCL 9LKX 9LKZ

* CnM4ION/CRFGPI/NVRPIfPI (i)
f,'M1N/LCGT/LAILA±3 ,LA21,LA23,LA12LA2,L'(XA,1L(XAi2,LKXt13
COMlON/CCGTfNVICGTSGT (1)
C IMMON/&.KF/LrA) SN ,LFLTRKLFCOV
Cfl?4MiN/CKFlNVFL I 9FLT (1)I
DIM4ENSION LD(15)gND(1 )
DATA NPLTZM/6'i6/
DATA IEOIvNO/-1,IHN/
R=WIND KLIST
WRITS(t(LIST9115) OATE(OUM) ,TIME(DUM)
WR 'IT=(KTEF'P,115) OATEADLM)qTIPE(OUM)

£i r FrR4ATc"1",2.p7Xp"w * * CGTPIF * 4*"f14X,
± "PROGRAM TO DESIGN A COMMAND GENERATOR ToAcKER"/eXv
2 "USING A REGULATOR WITH4 PROPORTIONAL PLUS INTEGPAL CONTRCL*/16X,

* 3 "'ANW. A KALMAN FILTER FOR STATE ESTIMATOho./25X,
'1, CGTPIF *"//L.XDATE I ",qAl.//,±jXq

5 "*TIM=E I *'AiV////)
REWIND KSAVE

'U REWIND KCATA
WRITE(KSAVE,112) IEOIqNPLTZMi
DO Vi T19,1

1' Nf(I)=A
DO £2 I=1,15

L2 Lf)(I)=l
LFLRPI f'
LFLCGT~t
LFLKgz 3
LTE VAL~r
LA90OkTa'
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ICGTC
ITRU=t
IFLTQz0
NVCOM=IINC (NOI4lNIZt4)
KOUIsKLIS T
KPUNCI4KPLOT
IF(NVSI4.GEoNPLTZI) GO TO 5!
NRITE t'lvNPLTZM

r. ~ GO TO 1(,'k*
51 W;ITE 102

RT'AO,9TSAMP

IF(TSAt4PsLEe!9) GO TO 5'
WRIT--IKLIT91J.3) TSAMP

JF3 FC R AT("". SAPL.E PSRIOD IS ,tFS.3, SECONDOS")
CALL SETUP(N3,LD,ICGT,ITRU,1)

*IF(LA tOr,') U1L,1,1 .Vw
I G LABOPT-

W;I TF 14% 4
.4 FCQMAT(",CONTROLL7RF OES!GN (Y OR N) 2 )

R7AO iiit!ANS
IrlIAt'SoEQ.NO) GO TO 50f
LFLIF=
CALL PIMT)((IPI)
IF(LASOPT) 1~~±5i

£25 W:ITE P,5 GPI(O N )
10'5 FORAT(o*'U;SIG-N RG YOZN -

IF(IAIS.o.NO) GO TO 1,57
CALL SRrGPI
IF(LABORT) 1349Zj ',l!.

15* W0 ITE 1/6
t IE6 FORMAT("? ESIGN CGT (Y OR N) ~F READ i1.1,IANS

IFIA SoEOoNO) GO TO lo"
CALL SETUP(N09LOvICGTqITRU,2)
IFr(ICGT) 1559I~u)a.i5

15r IFILA3O1:T) 1!1116j',VjLt
16 CALL SCGT

j7r IF(LFLCGT.LE~l) GO TO 125
2!t LABORT:'

W:ITrE 1; 7
V~7 FOR4AT(o'CONTROLLER EVALUATION WKT TRUTH MOOEL (V OR N) 2,"

REAO 111,1ANS
* IF(IAIKS*EO*NO) GO TO 25'

CALL SETUP(NOLo,ICGTITRU,3)
IF(LABOPTI 2Vv 2 6,1;V

25Z LTEVALsP
26(C CALL CEVAL

GO TO 11~9o LABRT',
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MR ITE If- 8 ( RN
10e~ F('f4AT( .FILT9ER DESIGN(YON)3"

IF(A111,IANS GO TO 94"
CALL FLTRK(IFLYR)

a IFfIFLTFvEo.t) GO TO 99 1

51V CALL SETUP(NDLOICGTITRU,3)
52 F(LA3ORT) SP,,5Z5,10.
S5CALL FEVAL

IF(LABORT) ±w;5,J~,1tu"
9' WZITE lr9

1' 9 FORMAT11"LNO DESIGN RUNS (Y OR N) )

I;(IAtS.EO.NOI GO TO WL
* IF(LFLRPI.EQ.9) GO TO 15"

NPNTS=N'kO#NNPPi N3(i1JNPNTS
NO)(?)=LKX

CALL WFILF'D(I.,NPNTSvNCRPI(L(X))
WR'I7E 113

i~r CT)NTINUT

R:-WINO KSAVE
* RIFWINI KCATA

RTWINI KLIST
WPIT- ±1?t

I-% VoRMiT('LINSUFFICISNT M!'MORY /SYSMTX/, NEiD: **14)
1'2 FORMAT('6.ENTER SAMPLE PERIOD FOR DIGITAL LONTROLLER 31,"
Lit FOOMAT(" ,PROGRAM EXECUTION STOP'6)
ill11 FORMAT(A~w)
112 FORMAT(214)
113 FORMAT(6X984REG/PI GAINS WRITTEN TO #SAVE# FILE")

RT URN
C END SUBRO)UTINE CGTXGI END
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SUBROUTINE SETUP(N39L~oICGToITRU91TYPE)
DIMENSION NO(1),L0(l)
IF(ITYPE-21 lu,15921.

10~ CALL SOSNINDLO)t RET URN
15 CALL SCMO(NOLD9ICGT)

RETUPN
V~ CALL STRTH(NDLDITRU)

RETURN
C END SUBROUTINE SETUP

SRO

SUBRnUTINE SDSN(NDLO)
COflNON/CFSIGN/NVCONTSAMtPLFLRPILFLCGTLFLKFLTEVALLABORT
COMMON/SYSt4TXINVSMSN (1)
COIIMONIZMTXI/NVZMPZMI (13
CO'IHON/ZITX/ZM2 (1)
COIIHON/NOZID/NNO, kRONP0ONODNWONWCDNPLD,NWPNWO,NNPF
DIMENSION NDt(i ,LO(i)
NSIZE~j
CALL RSYS(St4,LDvN31i,NSI7E)
IF(LABCRT.GT*O) RETUr-N
NSIZtNNPP
IF(NPLO.GT*NSXZE) NSIZE=NPLDI NSIZE=NS17E*NSIZE
Iv(NSIZA~oLE*NVCOM) GO TO 5
WR~ITE 1,1NSIZE

1,% FORMAT(O(INSUFFICIENT MIEMORY /MAIN±L/9AIN21,/ZWTXI//Z4TX?/, NEED

LA;IORT=NSIZE
R!-rURN

5 IF(N; -D*QoNPD) GO TO lo'
W=ITE it 2

IP2 FOhMATV8ENUMBER OF INPUTS AND OUTPUTS MUST BE EQOUAL FOq OIESIGN')
LASORTz-1
R-TUFN

1 CALL 0SCRTO(L3,Z'41vM2J
RSTUL'N

C END SU3ROUTIIJE SDSN
ENO
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SUBROUTINE DSCRTD(LD9ZMltZf42
COMMON/t4AININDIMNDIMLCOM2.tj

COMMONIFILES/I(SAVEKODTAKPLOT,,(LISTKTERN
COMMONISYSMTX/NVSMoSMII)

CONMO4N/LC/LAPLGPPLPHIL8DLEXLPHOLQ, LQNPLQOLCI.DY ,L -YLHPL~t
CON'MON/SNHTX/NVDIINODYNOSYOM(1)
COMNCNLKF/LEA3SNvLFLTF.KsLFCCV
COMMON /CK F/NVFL TFLT (I I
DIMENSION LD(i)tZMl(l)vZMZ(j)
NorI1NPLO
NDXI1.aNDIM~i
CALL POLESESMNNDv1v!M±.!M21
0O 1 lxi, NNO

I IF(ZMi(I)9GTs.%) LFLCGr=-i
k CALL TFRt4TX(S49O!4,NNOtNNO,2)

LGPaLAPNPLD*NPLO
IF(NWDEQ*L) GO TO 5
CALL TFRMTX(SM(LD(41) ,M(LGP) ,NNDPNWD,2)

5 IF(NDD*EO*e) GO TO IC

LZ=LA00(NPLi9NN0'+lLLl~ PDN)J i
L'LADD;( NPLDgNNO+19NNS9.1)
CALL ZPAclT(DM(L~jNDDNNOHPLD)
CALL TFF.MTY(SM1ILD(31) ,('(L2) ,NNONOD,2)
CALL TFRTX(SI(LD(12)ICM(L3),NDNO2)
IF(NWDEQO.) GO TO 8
LI=LI+LGP-i
CALL ZPAF-T(D?(Ll)qNDDNWwNPL0)

%I L2=LAfOOR(NPLCtL tNWO±i)+LGP-1
L!=LAnw&.( NPLC,NNO*INWD+1)*LGP-i
CALL ZPAR'(DM(L23 ,NNONWDONPLD)
CfELL TFRMTX(SM(LO(i3)IDI4(L3),NDONWDD,2)

le LP$I=LGP+FPLDONWPNWD
LTAOS4=±
CALL NGSrFT(DlsNOI4,NT)
CALL OSCRT(NPLDDMTSAIPPFLTZ4lNT)
LFLTP9K=LEAtSN+NPLO' NPLO11 CALL TFPt4TX(OM(LPHI1,FLTqNNONNO,1)
L 8DLPI + NNO* NND0
CALL TFRHTX(SJIZMiNNDqNNOI)

~ r CALL FHI'WLISP1,SM(LD(2)),NNONN~,NROOM(LBD)
LFX=LBONND*NRD
IF(NOOEO.a) GO TO 15
Liz LAD0R(CNPLO,, N'401)
CALi. TFQMTXIDME(LEXIPLTILi),NN~ON)O9i)
LPH03=LEX* NND*OD
L12LACD ( NPLONND~i ,NND4i)

CALL TFRMlTX(O1(LPHO),FLT(Li),NOD0ND')hi)I. 179



L(~.LPHD.NtrO*NDD
GO TO 2L-

15 L92LEX
20 IF(NWD.EQ.1) GO TO 25

CALL FT#ITX(SM(LO(5) ION(LQJNWDNWOR
LQN=LQ.NWD*NWD
GO TO 28

25 L()N=LfO
28 lF(NWD.EO*0) GO TO 33

CALL FTM4IY(SI4(L0(j1d1 ,"(LQNINWDNWDO)
LOOS=LO NN WVDN400
GO TO 35

33 LOD=LON
IF(NWPNWD*GT*..) GO TO 35
LC=LQD
GO TO 36

35 CALL QDSCRT(DPI(LOJt4M(LON),ZMiZMZ-)
LCzLQ0+NPLD*NPLD

36! LOY=LC+NPD*NNO
LEYL0Y+NPC*NRD
LtiP=LEY+NPC*NO
L P=LHF+GNmr*NPLO
Li=LR4 NMtCNMD-LC
CALL FTMTY(SMELOI6)1I t0M(LC) ,Lli)
Li=LEY-i
NODT~i
DO 45 I=LOYLi.
IP(O2M(I).eO.O.P GO TO 4'"
NOD Y=
G1 TO 45

4'. CONTINUE
45 NOSY=i

IF(NODDLT.1) GO TO 55
LtL4P-i
00 5C 11LFYLi

IF(OMfhI.EQ.~oI GO TO 5"

GO TO 5F"'Is5 C34TINUE.
55 CALL MATLST(.(LPHI)PNNrNN~,"PHI*0,KLIST)

CALL MATLST(OM(L9DINN0,NR0D-DIST)
IFCNWPNWO.GT~T) CALL #ATLST(OP'(LOO) ,NPL~oNPL0,p"QO%,KLIST)
IFENMD*GT*.C) CALL MATLST(0M(LHP),NMONPL0,"HA,,(LIST)
IF(NOD.EC*11) RETURN.4 CALL MATLST(OM(LEX) ,NNDNDD0,EXD',KLIST)
CALL MATLST(OMI(LPH0I ,NOONOD,0PHN~,KLIST)
RE TURN

C END SUB3ROUTINE OSCRTO
'END
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SUBROUTINE QDSCRT(QQNgZ~itZM2)
CONMON/MAINI/NOXMNDIP1,COMI (1)

* COWPION/DESIGN/NVCOMPITAMPLFLRP1,LFLCGTLFLKF,LTEVALLABORT
CO#4MON/NDIMD/NN0,NRONPO,NMDNDo9NWD4IOoNPLDNWPNWDNNPR
CONON/OCD/LAPLGPLP1,LOLEXLP4OLOLQNLQ0,LCLDYLCYLHPL~i

* COMN/3StPMTX/N VON, NODYoNOEYtM(l)
S DIMENSION O(i)9ON(l)vZMI(l)9ZM2(1)

IF(NUD*EQ'r) GO TO 5
CALL TFRt4TX(QvZM1,NW0,NWD,2)

5 IF(NWDoEO.3) GO TO V
LtzLDOP( NPLONWD4±,NW:)+±)

V CALL TFMXQtM(i~NDgW02

LCALL INTE(NPLOO'4(LAP),M2,O~gMLQhTM)

C END~ SUSROUTINE OOSCRT

* SUBROUTINS SC40(ND9LDICGT)
C 4/DES
COMMON/FILES/KSAVE, KDATAKPLOTKLISTKTCRM
C lM M 0N /S YS M T X/N V S M 9S M( L

CO)MMON /ZM!XI/4V ZMPZ4 (i)
C OM'MO4/ZMTX2/Z'l 2 (1.)
CO)MMON/NDIIMO/NNC, NRONPDNMONDD,NWDNW03hNL,NWPIWD, NNPR
C1)4MN/N0Il0CNNZNRCNPC

COM4MON/L1ZEGPI/L XD~rlLUWLPHCLL'(XLKZ
C0MON/CvvGPI/NVR0IqRPI(i)
DIM;'NSION NO(~)LD(l)
DATA NO/IHN/

IL FnRMAT(///iX,5(4  ,G EIN,( 1//
* NErWCMzo

IF(LFLRPI) LkI9,pl

READ 11±,1ANS
IF(IANS*E0.NO) GO TO R
CALL RSAVFS(SNNOjIFRR)
NSIZE=NO (1)
LKX=N!L (2)
LK(Z=N (*3)
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CALL FTMTX(SMRPIILKX),NSIZE,±)
MFISRReNEowl RETUPP4
CALL IALST(RPI(L'(EINR~i2NND,'KX",KLIST)

* CALL MATLST(RPI(LKZ),NRONR0,"KV,0KLIST)

GO TO 1-1
a FtLFLCGToGEo~l) GO TO 9

WRITE V~3
1'3 FnR4AT("!SYSTE1 UNSTABLE -- OPEN-LOOP CGT NOT FEASIBLE")

RETURN
9 LKXIz

LKZzl=PON
NSIZE-NP2#N
CALL ZPAFT(RPI(LKX) ,1,NSIZE9t)

1?' lv(ICGTeEO*C) GO TO 12
WRITS 1"8I if 6 FORMAT(" MODIFY COM4AND MODEL (Y OR N) "

RrAD ±iiIANS
IF(ZAhSoEO.NO) RETURN

12 CALL iRSYS(SM9LON09291CGT)
IF(LA90RT9NE.-*%) RETURN

CALL POLES(SMNNC,2,ZM1,ZM2)
IF(NPC9E0*NP0) GO TO 15

II WDITE 114
L A90T=-i
RFTLRN

15 CALL OSCFTC(LOZMi)
Vr2 FORMAT(o READ REG/Pl GATNS FROM ODATAO FILE (Y OR N) I,)
V"4 FORMAT(-rCOMMAND AND CESIGN MODEL OUTPUTS NOT EQUAL IN NUMBEFR-)
1±1 FORMAT(All

END SUS9IOUTINE SCMD

LIN

182



SUBROUTINE 0SCRrC(LD9zPI1l
C04'ON/9AIN/ND!HND~IM19COMIg1)
CONI4ONlOE SIGN/NVCOITSAPLLRPILFLCGTLFLKFLTEVALPLABORT
COpgNONIFI LES/KSAYE, KDATAKPLOTKLISTKTERM
CO9N ON/SY SMTX/N VSMSt (L I
CO4MNON/NDIMC/NNC9NRCvN0C
CO,4MON/LOCC/LOI4CvLBDC ,LCCLOC
COtlMON/CMOI4TX/NVCMNEC1,tOOCC4(j)
DIMENSION LD(1)',Z'±(1)
NoIM=NNC
NO I MzNOI t4+1
CALL tOSCRTSNNOItNT)
CALL DSCF7(NDIMSt4,TSAMP9CMZM19NTl
LPHC:1
LBDC=LDHC+NNC'INNC
CALL M'UL(ZM41Sl(L(2)NDIM,NDIMNRCCM(..Bl C))i LCC=LB0C4NNC#NRC
LC=LCC+NPC'INNC
Li=LtCNPC*NRC-LCC
CALL FT1TY(S4(L(3))qCmILCClL1,1)
NODC±lI Li=L!.LCC-1

IF(CM(IleEgo~t. GO TO I"
NODC="

II GO TO £5
1~CONTINUF

I £5 CALL MATLST(CMNNCNNQ,*PHMtKLIST)
ICALL MATLSIICM(LBOC),NNCNRC,"80M'4%KLIST)
t CALL MATLST(CM(LCCJNPCNNC,"CM,LIST)

CALL MATLST(CM(LDC),NFC,NRC,"OMgKLIST)I; C RtTURN
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SU9ROUTTNf STRTH (NDLV, ITRU)

i COMMON/SY StTX /NVS49 SM (1)
COMPION/ZtTXIINVZM97MI (L)

& COPIION/ZITX2/ZM2(i)
CONMON/NOItID/NNONRO,0NPDMNtDNOONWDNWtDNPLDNUPNWON4PR
CO'INON/ND!MT/NNT*NRTNIITtNWT
DIMENSION NDI±)LD(1)
DATA NO/IHN/
IF,(ITRU*E~oJl GO TO 5

r ±3 FORNAT("MOF RT MDL( RN* r RFAD IivtIANS
lit FO:MAT;A::TUHMOE w O ))

IF(IANSFeONO) GO TO 2"
I- CALL RSVS(SMvLONO,39IT 0 U)

IF(LABORT,GT.'.*) RETURN
NSI ZE NNT4kNT
IF(NSIZE*LE*NVCOM) GO TO 8

17'1 IFORMAT(OICNSUFqCIENT MTEMORY /tAINI/,/MAIN2/,/ZPITXj/,/ZMTX2/,p NEE

LABORT=NSIZE

* I8 IF(NTE.NR)AND(N4TEQNMO)) GO TO 1.
WRITE 1f2

1~ 2 FON~-(4'INPUTS AND MEASUREMEN~TS MUST BE EOUAL IN NUMBER FOF EI

IN AND TRUTH MODELS")
LABORTzI1

p~ CALL POLES(SMNNT3Zt'i.Z42)
- CALL DSCFtTT(LDZMl)I21 L-EVAL=I

RET UP N
C FNO SUgROUTINF STqTH

IEN
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SUBROUTINE OSCRTT(L~oZNI?
COMr4ON/MAIN1/NOINNIM1vCOM1(1)
C0P1ON/ESIGN/NVCOHTSAMPLFLRPILFLCGTLFLKFLTEVALLA3OR-T

* COWNON/SYSMTX/NVSI,SM(i3
COIIMON/FILES/KSAVE, KOATAKPLOTKLISTKTERM
CO$4MONINOIMCINNONQONP0,I4P4ONOONWtJNWDONPL0,NWPNI4O,NNPr
COMt1O?/NDINT/NNT NRT, NPT, NUT
COIhON/LOCT/LPHTLBOTLOCTLMTPLRTLTOT ,LTNT
COMMON/TPUH4TX/NVTlTM(l)
DIVIENSION LDll) 9ZMi (1)
NODT4NNT

* CALL NOSCRT(S4,NDIM,NT)
CALL OSPRT(NDI'lS9,TSAMPTMvZMiNT)

If LPHT~i
LOTLPHT4NNT*N4T
CALL MrULIZMISM(LO(2)) .NDIMNNIMNRTTM(LBDT))
L')OT=LB3CT+NNTf NRT
IF(NWT*GT*0~ GO TO It,
LHT=LODT
GO TO 15

* * £ CALL MAT3-(NOINNWTSM(LO(3)SM(L(4),ZM:.)
CALL INTFG(NOI? ,SMqZMjTN(LQCT),TS, MPI
L'T=LO T4NNT*NNT

15r Li;T=LHT+NHTxNNT

* LTNT=LTDT+NNC*NNT
Li=LTNT+NCD*NNT-LHT
CALL FTMT)r(SM(LO(5)),tT(.HT),Lli)
CALL MATLST(T4,NNTNNT,'PHT*,I(LIST)
CALL MATLST(T4(LBJT) ,NNTNRToo83T*',KLIST)
IF(NWT*GT*C) CALL MATLST(TMlLQOT),NNTNNJT,"QOTKLIST)
RETURN

C ENO SUBROUTINE DS^-RTT
FND
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SUBROUTINE PIMTX(IPIl
COW'IONfl4AININDI14,NOIM1,COI(1)
COMN'DE SIGN/NVCOI4,TSA'4PLFLRPI ,LFLCGT ,LFLKFLTEVAL ,LABORT
CONNONIFlLES/KSAVEKDATA, KPL OTKLISTKTER'
COMMION/ZITX1/NVZNZ1(1)
COMHON4/ZTXVlZ42(l)
CONPION/NCIMD/NNONRONPDNN0,NOONWDNWDD,9NPL0,NWPNWONNPR
CONMON/LOCD/LAPLGPLPHILBDLEXLPHOLOLONLQ0,LCLDYLEYLNP,LR
COMMION/OSNPTX/NVD?4,NOVYNOEY, 01(1)
COMNLCIITRL/LPIii ,LPII& ,LPI2I. LPIZ2,LPHiL LBOL
COMMON/CONTROL.JNVCTL9CTL(l)
IFtlPIlc.Qel) RETURN

l1 FOMAT (f//i'X9Soo ),"CONTROLLER~ SET-UP%95( *)#/
* . N'IMNNPR

N!!IZE=NDIM*(2*NDIM4NPO)
IF(NSIZE*LEeNVCTL) GO TO 1r

II'l FOR'IAT(; 'INSUFPICIENT M4EMORY /CONTR.OL/,p N,;.ED3 '914)
LABOPT=NSIZE
RFTUON

.L N:DIPI=NOIM4±

LP121=LPiZ+NNO*NRD

LPI2?=Lol2i.NPD*NNO
LOHOLLP122NPO*NPD
CALL TFRMTX(O'4(LPI4I),ZM11NN0,NND,2)
CALL SU9I (Z~iqNNONOIv)
L2=LACOR(NOIM91,NND+i)
CALL TFR.M1X(DI(LBO),ZMi(L2hiNNCNPO,2)
L7=LAOR(NOIM*NND+Ivll
CALL TFF?47X(D1(LC),Z~i(L3) ,NPONN~o,)
L4zLAODR(NDIMqNND.1,i9N0.1)
CALL TFRMT(Dl(LY),Zt~i(L4i),NP,t4F.D,2)
CALL GmINV(NOIPI,NDILM,ZMI±ZM2 ,'4~,1)

-~~ IF(MF1.El.NDIM) GO TO 15
WcITE V'2
NWITE-( KLIST,1:?)

112 FORIATrtPI MATRIX IS RANK DEFECTrV:-)
15 CALL 1ATLST(Z'2NNPR,NNPit,-PI',KLIST)

CALL TFRMTX(CTL(LPI~I),ZM2,NNDNND'94)
CALL TFRMTX(CTL(LDIIZ),71C2L2),NNON4RDti)
CALL TFRMTX(CTL(LPI2i) ,Z'2(L3),NPDNN4D,±i
CALL TFRMTX(CTL(LP2),ZM2(L4),NPONROl)
CALL COIF
IPTsI
RETIUrfN

C '140 SUBROUTINF PIMTX
END
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SUSROUTINS COIF
COMNON#NAINIL/ND!MNDIfP1,COM1(1)
COt4MON/NDIKO0/NN 09 tD#NP09NMDNDO NY Ov NWCDtNPLOoNWPNWDNNPR
COMlMON/LCD/LAPLGPLPHILBDLEELPI4DLOLQNPLQDLCLDYLEY,*LHPLR
COMM'ON/SNMTX/NVD4NOOVNOEYDM4(lI
CO?4NON/LCNTRL/LPliiI LPIIZLPI21,LPIZ2,LPMCL ,LBDL
CO$4MON/CONTROL/NVCTL ,CTL (1)
CALL TFRI4TX(D-4(LPHI) ,CTLILPIDL) ,NNDNND,2)
LI=LADCP(NWO!N1tNMO.I) LPHDL-1

-CALL TFctITX(04(L83) ,CILILi),NNIoN.D,2)
LL=LADDR(N0114,NND41,1)tLPHOL-1
CALL ZPAvTIOTL(LINRCthNNDD4I4)
LlzLADOQ.(NDXtINNO*1,NND*±) +LPHOL-1
CALL I9NT(NkDC T L(LL)9i.)
LSDL=LPHDL*NDlI*'31MI
CALL 7PARTfCTL(L30L) ,NNDNRt09)
LizLADCR(NDIIINNDfl,i)+LBDL±i
CALL IDNT(NP.OCTL(Ll),1.)

C END SU3POUTINF- CDIF

*I4
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SUSPOUTINE SlkGPI
COMMON/MAINjNDI~,NDI"LCOMI(i)

COMMON/FILES/KSAVE, KOATAKPLOTKLISTKTI Rl
CO'"M0N/SY EMIT XNVS!4, SM (1)I
COMMION/ZNTXI/NVZ49ZI(1)
CONNON/Zf4TXZ/Z 2 (1)
COtONN I P CNN~o N09NP9 N)NOD oNWOtNWC09NPL09,NWPNWCt NNPR
COMMON/LCNTiRL/LPI1±,LP112,LP121,LP122,LPHiLLBDL
COMMflN/CONTROL/NVCTLtCTL(.3
COt4NON/LREGPI/LXOWLUOW ,LPHCL ,LKX ,LKZ
CnMt404N/CQcGPI/NVRPIqRPI l)

W OMA ///e9 (0* 1),,REG/PI DESIGNt r,5r 4"*)////)
NSIZr=NRD#(#NRD+NND) +NNPR*NNPRI IF(NSIZ=.LE*NVRPI) GO TO 5
WZIxr 7~1A~ISUICIL -HORY /CREGPI/, NEEDS 9141
GO TO 8

5 NS7=N'*(*NRN0
Iv(NSIZE*LEeNVSMI) GO TO If,

s WmrdTE i;2,NSIZE
1r-2 FGRMATI*7INSUFFICIFNT ME40RV /SYSMTX/, Nwi.r: *'I
8 LABOPT=NSIZE

RI:TUO'N

LU=LX.NNPR*NNP~t
CALL WXUS(SM(LX) ,SM(LU) ,COMiZPiIZM2)
LUISTaLU. NNPFONRO
LPHP=LUIST+NNPR*NNPR
CALL PXUP(CTL(LPHL)CTL(LDL)S(LX,SM(.U)CO?1±,Zml
iSM(LUIST) 9SI(LPt4P) ,SM(LX),9ZMI)
CALL tRIC(NDI~lStlLPHF),ZM2,SM(LX),Zl~.RPI(LPHCL))
CALL GCSTAR(SM(LPHP3,CTL(LOL,S4(LU),Z~it±SM(LUIST),S4ILX),ZMZ)
CALL TFRMTX(Z41lSM(LXI,9JRDN0IM~l)
CALL FNMlULtZ~igfTL(Lli),N.DN-NO-hNDRPIL(X))
LiZLADOik( NR392.,NND+I)
CALL Ft1MUL(ZMi(Lil)CTL(LPIZI3,NRONRO,NN',ZM42)

A N2 IN=NRJ
N 31 41aNDI P+1
CALL NAD1(NRDNNDRPI(LKX),Z2RP(LKX),L.)

AM CALL FPMUL(ZtliCTL(LPI1Z),NRDINNONRD.kPI(LKZ))
CALL F"UL(ZM(L),CTLLPI22),NRDNRDNFDZM2)
CALL NAOFCl(NRDNRORPI(L9(Z),Z'l2,RPI(LKZ),L.,)
CALL MATLST(RPI(LKX),NRDNND,"KX**,KLIST)
CALL MATLST(RPI(LKX3,NRD,NND9 KX-KTERM)
CALL MATLST(RPI(LKZ),NRDNR0OKZ~,KLIST)
CALL MA TL ST(RPI (LKZ3,9NR 09NRODI"KZ",KTER4)
LrLRPIZ1
LFLCGTz(
RETURN
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C END SUBROUTINE SREGPI

SUBROUTINE WXUS(XlUSZM19ZM2)
CO"MION/MAIi/NDIMNOltljCotj (1I

CO"MION/FILES/KSAVE, KDATAKPLOTKLISTKTERI
7 COMMO1-/SYSKTX/NVSm,S"(1)

* r COMMtONfNDIPO'/NMD, NRDNPCNM09D, NO, WO, NWC,'NPLDNWPNWONNPR
COM4ION/LOCO/LAP ,LGP ,LPH1,L8DLEX.LPH0,LOi.NLOLCLOYLEYL4PL(

CCMMN /LC TR/LI -- , L-I -19LP I?LI ??,L PH.L oLeL2
CO?1PvON/CCNJ7ROL/t4VCTL9CTL(iI
COMMVON/LREGPrIL XOW, LUCWLPHCLLKX.LKZ
COMMON/F,0GPIfl4VqPI9PPI(i)
DIMPLNSION X(2jUQi)9S()ZII1),?Z(I)
DATA NO/iHJN/
IF(LFLRPI) 5959IJ

5 LXDW~i
LIJDW=L Dw+2*NRO*NRD
LPHCL=LUCW.NR.O*NROI LK X=LPMCL +tNPR*'NNPR
LKZ=L(X*N-CNN)
Li=LcHCL-.1

CALL ZPAPT(RPIqI9Lz,±)

I'll FORMATV. ENTER WEIGHTS ON OUTPUT DEVIATIONSI inI2)
CALL ;Z04GTS(RPIvNPD9'4)
WRITE 1'.29NRD

1"2 FORMATV* ENTER WEIGHTS ON CONTROL MAGNITUDESI **1;-)
CALL ROWGTS(RPI(LUX)vNRD,1)
WRITS! 1A39NRD

1 3 FORMAT("9 ENTER WEIGHTS ON CONTROL RATES! 0',12)
CALL RQWG'!S(RPI(LU0W) ,NRD,1)
CALL MATLST(RPINPONPDwYKLIST)
CALL OVCTOP(NPDPIlZM1)
CALL tATLST(Z4tNPO1,*Y',KTERM)
CALL DVf'TOR(NRORPI hUX) ,ZMI)
CALL MATLST1ZI±,NRO,1v"UM"KTER1)
CALL ?OATLST(RI(LUXINrD,!)NRC,-UMrKLIST)
NDIM=NNPF
NOT Mi NDT foi
CALL FOPMX(RP1,RPI(LUX1,OM(LC),OttILOYIZM2,ZM1,GOMiI
WRITE (KYEFI4,114)

UjL FORMATI'rhIODIFY ELEMENTS OF OX# MATPIX (Y OR N) 3,)
READ 111ANS
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11.FOR4AT(A,!3
IFIIAKS*EO.NO) GO TO 20
WRI~T(KTERM*1?±5)

1ft FORNATIr' LIST *Xf MATPIY TO TER41NAL (Y Ok N) 30)

REA3 111, TANS
IFIIANS*EO.NO) GO TO 12

CALMATLST(Z4?ZN'RNNP,9X,KTEFMt)
12 CALL ZMATIH(Z,4t4PRqNNtPR,-1)
Vr CALL MATLST(Z4NNPR9NNPR,"XvKLIST)

CALL MATLST(RPI (LUD),N~iONRD,"UR,KLISTI
CALL OVCTOR(N:VlqPI (LVOW) qZm1)
CALL MALTZ~NDi"m K~4
TI.. ?5 TSAMP
CALL SCALf(ZM.,ZP2,NDI'4,NOItTl)
CALL DIGNIgO~CT(PO~lto
CALL MAT3A(NCI~,NCIMCOMlPZM±,X)
CALL tAT.*A(NRONDIiCTL(L9)L),Z~ijZH2)
CALL 4A'2Af(NDIiNOI'4,COP4l.ZMi,711)
CALL MMUL(ZFIICTL(LBDL) ,NOIMNDhtNOS)
CA~LL TFRMTX(RPI (LUO0W) ,ZMI9NKNRDO2)
CALL 1A001(NPONRO,!N2,VIJUTSAMP)
R.z-TU;N

C FND SU8qOUTIN7 WXUS
END

SUBROUTINE. FORMX(0YvRYvCDXZltZ2J
COMMON/NCIMIDNNDNzONP0,NM0,NDNWD9NWC0,NPL0,NWPNWD, NNPR

CALL FK'ULEOYiCPNPDNP0,NNOZl)
CALL FTMUL(C*ZlNPDNNDgNND#Z2)
CALL TFRMTX(Z~,XtNN09NND,2)
LizLA)O(NNP~vNND.±,NNO+±)
CALL TFFMTX(RfX(Li),tKRONRDv2)
L2zLADD;( NPRNNO+ ' 9)
IF(NODYsE0*D) GO TO 5
CALL ZPART(XlL2) ,NRONNONNPR)
GO TO 15

5 CALL FTMUL(OZiNPON~b,NNDZ2)
CALL TFRt'TX(Z29X(L2)9NR09NND9Z)
CALL FMMUL(QYONPDNPD9NROZ1)
CALL FTfPUL(O9Z1,N0D9NPDNRDvZ2)

00 12 I=i,NRD
Li zLADOZ (NfNPRNNO.i 9 NND.lI
00 12 JzINRD
LlzLI+1
LZBL2,1
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K (LI) K (LI I .2( L 23
It L19I.ll
15 DO 2f 11,WNDC

LtzLAOOR (NIPRNND.1 ,I1
L2zLADRNNPR,! ,NNO.I3
D0 20i Jz1vNRD
X(L2)=X(LI)
LzLi4 i

V~ L2zL?NNPR
R.TTUvN

C END SU89'1UT-INE FOIX

SUJROUTTN. PXLP(PHIDLBO=-LXUSBUIBT, UIST,PHIPXPZ4i.)

CON MON /ND IMOINND, NP DoNPNND, ND NRD~oNW00ONPL09 NWPNWCg NNPP

I. PIIXP(1Il~ZMl(1)
CALL G MINV(NR~qNR09 Uo 7"19MR 911
CALL MAT3(NDUINRDBDELZIIBUIBT)
CALL MAT5(ZM41,SqNNPNFDMqUTST)
CALL M*tUL(BDLUISTNOIMNZNRDIt1,Zt1)
CALL NADCI(NeI1INOINPHIOLZ IDHIP,-1.3
CALL '*tUL(SUISTvNDIMqNRONDI,71±)
CALL MADOi(NOIP4,NDI'4,XZM±,XP,-t*)

* 2 RETURN
C END SUBROUTINE PXUP
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SUBROUTINE GCSTAR(PI4IP,8OELUR(,UISTGCSZIq1)
CO"NON/(AINfL4NDXI1NOII41,CON1(lI
COt"NONIFILES/KSAVEKDATA, KPLOT,'CLISTKTERM
COt4NON/NDIMO/NNONRDNPDNMND9,NWDNWCDNPLDNWPNWONNPR

CALL .4AT3 f MNR09 NOIM 9,8 DL,9RK 9Zf41I
CALL 14A 001 (NP~, 9NR D 9Z041 9U9 ZN±91.
CALL GMINV(NR~vNROZN1,UqMR,1)
CALL MATS(UBZ)ELitRDPNRONDIMZ1)'
CALL HATS (ZM1vRK9NRIqDN~IHNDINGCS)
CALL NMUL(GCSPHIPNR~,NDINDIqZMj)
CALL MADtl(MFIN0NItZM1vUXSTGCStisJ
WRITEMKIST913h)GINAfIXGCV

CALL 'ATI0(GCSNRONDIN,3)
:t9:T UFN

C END SUSROUTINE GCSTAR
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SUBROUTINE SCGT
COWNON/DEsrGN/NVCOM9 TSA4PLFLRPILFLCGTLFLKFLTEVALLA8ORT
CON4FLSKAtI)TtPOtLStTR
COMMON/ZMTXlajNVZMZ41 (1)
CO1QION/ZITXZ/ZMI2(1)
CO99PON/NDIMO/NNDNPONPNMDND3,NNWO0,NPLDNWPNMcNNPR
CONMON/NDIMC/NNCqNRCqNPC
COMMON/CHDMTX/NVCNEWC1,NOCC4(1)
COMt4CN/LREGPI/L XDWLU!"4WtLPHCLLKXsL(Z
COMNCSP/VP9PQ
COtIHON/LCGT/LAilLA±3,LA21,L A23, LA1ZLA22,LKXAa1,LKXA1ZI.KXA13

* COI'1140/CCGT/NVCGT ,CGT (1)

15 NSIZE: (NNO,2*NPO)(NNC+eNcZCNDD)
IFENSIZF'.L~eNVCGT) GO TO 16

* WRTE- i"6,NSIZE
LA9'0!TZNSIZE
Rt.TUON

1t6 IF(NNI*GEoNNC) GO TO 17
WRITE 1-7
GO TO 1fl

17 IF(NND.GE*N00l GO TO £9
W IT7 V~8

18 LA40RT=-i

1 9 Le.1LJlA
Li13=LAI1±.NNO*NNC
LA21=LAi3,IND*NoD
LA?3=LA21 *NPD*NNC
LA12=L A23NPO*NOD

LKXAii=LA22,NPD.NOC
LKX~A2=LKXA11*NPD*NNC
L A 13 = L KXAl 2 +N PD *N P.C
CALL CGTA(CGT(LAitICCT(LA3htCGT(LMZi),C6T(LAa3),CGT(LAtia,

I CGT(LAZ2)vZN±,ZM2)
L24" CALL CGTKY(CGT4LA11),CGT(LA13)t,GT(LAZ'1),PGTILA23) ,CGT(iA1Z),

j. CGT(..A2Z),CGT(LICXAlj),CGT(LKXA12),CGT(L(XA3,ePI(LI()
LFLCGT~t

6~ F)PDATIO'INSUFFICIENT Mr'4OPY /CCGT/, NEED$ %i.)
I"? FORMAT (*.FEWER DESTGN M'IOOL THIAN COMM~AND IM03EL ST4TESw)
108 FCIAT(*OFEWER DESIGN ?0OOZL THAN DISTUF8AKN,-- MODZL STATES

RE:-T UP N
C END SU3QOUTTNF SCGT

END
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SUBROUTINE CGTA( AliA1.3A2±,A23,A±ZA2?,ZM1,Zt2I
COI4MCN/IAIt41NOI4,NOIHICOMI (1)
COIIMONfFILES/KSAVE, KOATAKPLOT,e(LISTKTERMI COMMON/SV StTX/NVS4,SM(l)
CHAON/NIM/4NNDNpDNN!),NDNW),NWOONPLD.NWPNWDNNPR
C0O4/LOCO/LAP.LGPLPHIgLLtPbDLOLQNLoDLCLOYLEVgLHOLR
COMMOI4/DSNMTX/NVONNOVNOEYt)F(1)
COldMON/NDIWmC/NNCtNRCtNPC
COMM~ON/LOCC/LPH4CtLBDC ,LCCLOC
COMON/CMt4TX/4VC41,NWCNNODcCgM(1)
COtlrlN/LCNTRL/LPIiiLFIi2,LPI2ILPIZ2 ,LFHOLLBDL
COwM4ON/CONTROL/NVCTL9CTL(j)

7 orqENSION AII(L)A13(±iAZ(l),A23('),AI2()AZ(1)ZI(I),ZM2(iI
N2:) =N NO
NOIVII NOTt4+-
CALL TFRMTX(C49ZMiNNCiNNC921
CALL SUtBI(Zt41,NNCNOI')
CALL F1HMUL(CTj.(LPI1Z3,lCMLCCINNONRO,NNC,ZmZ)
CALL SCAL!(ZHZ9ZM2,NNDNNC,-lo)
N3=MAXl(NOC9NNC3
LZ=1+NND*NNO
L!=L2+NN!D6NB

L4=L3. IND*NB

L6=L4NJNNDN
NS17E=L6+KlP3*NNC-lL

* ~IF(NSIZ ENS1 GO TO I.I WRITE i1'cNSIZE I
JIZ FO'kIAT(*'I1NSUFFICIE.NT I--1OQY /SYSMTX/9 N~rcOl %914)

LABORT2NSIZE

I CALL AXMCCLL~l94l~gNgMtigM
I. S14(L2) ,SI(L3J ,SM(L'.J SM(L51 3
CALL. 4vUL(A1I19MONDNNCNCZ'12)
CALL FbMUL(CTL.(LPI!iJZM~NP0,NNDNNCA21)
CALL FMMUL(CTL(LP122),CM(LCC),NPDNO,.DNNCSM(L6))
CALL FMULAiCM(L3C)NND,NCNC,S1)
CALL FMUL(CTiA(LPXIi) ,SM,NND,Nt.J,Q,AIa)
CALL F44IUL(CTLILPI2i) ,SMPNP09NN3,NRC9A22)
IF(NCDC*EOXII GO TO 2
CALL FMbUL(CTL(LPIIZ),CM(LOC),NN0,N~kONPCSM(L2))
CALL FMAflO(Al2,SM(L2),NNDNRC9A12)

1jj.~CALL FWNUL(CTL(LP122) ,CM(LDC) ,NPOPNRONRCSM(L2))
CALL F4ArOOIA22,S4l(L2)vNPONRCvA22)

2 IFfM4oDEO.V) GO TO LS
CALL HtUL(CTL(LP1II),OM(LEXSNNONN0,NOOZM2I
IFINOEY*EC~ii GO TO 5
CALL FMMUL(CTL(LPIiZIOW(LEYJNNONRONDoZMi)
CALL MAOOI(NNaqNOOZ71iZ'2,ZM2,±1

5 CALL TFqMTX(C4(LPe4),ZM1,NDONr.D,2)

CALL SUBI (Z#11,NOONDP!) 19



CALL AXBMYC(CTL(LPII),NNZM1tJDDZ42ALiS
I S~fL2)9St4L3hvSNIL4d)vS(L5))

CALL N"~UL(A39ZMi9NN09Nb0,NOZ421
CALL tACCI(NN3,NOOZM2tCP(LE-X3,ZM2,-1.)

7 CALL PrNMUL(CTL(LPI2±),ZNZNPONNONODDA23)
15 NorM=NPD

N01t4J.NDIM*1
CALL MAO7.1(NP3,NNCA21,S'(L6IA21,1d)
IF(NOEY*EQoL) GO TO 2'

* CALL MMUL(CTL(LPI221tr1(LEVINP,NRDNOZ')
CALL rADl(NPDNDA23,ZM1,A23,'I.)

2. CALL MATLST(A±1,NNNVC,'A±±**,KLISTI
CALL MATLET(A~iNP~iNNC,"A2±%*KLIST)
CALL 'ATLST(A2NNDNRC,'AIVKLIST)
CALL tATLF.T(A22,NP0,NiC,'A22%0KLIST)
IF(4DD.GToC) GO TO 25

V'.i FOQMAT V"MATRICES A1.3 ANO A23 ARE ZERY*)
R TURNI.25 CALL MATLST(Ai3,NN0,NDD. A13,tKLIST)
CALL MATLST(A23,NPONCO,-A23",KLIST)
RTURN

C END StJBROtJTINE CGTA
~No0

SU94OUTINE AXBMXC(ANAeNigtAvttZ*2
COv4MO'W4MANI/NDIM9NDIM±,CO4±(i)
COI1MON/FILES/KSAVEKDATAKPLOTKLISTKTERM

DATA --t AYqITMAX/i.E-693/
CALL T RA N SL( N AA 9Zi )
CALL 2IG -N(NAZiLZ2,Z2(NDIMA ,AU,±)
CALL TAN Si (NA 9CO041 qZ1)

>4C4LL E IGEN (NE3B 9? Z2 (N DIMV )BU 9 )
CA-LL QUATE-(F tCNANB)

If, CALL MAT4A(AUq~vNAqNANBZ2)
CALL 'AT(Z2,BUNANBqN8,R)
CALL SLVSHR(ZINACOM1,NBRNII)
CALL MAT',(RB'JNAtN3vN8,PZ2)

IF(IT*GT.Il GO To L5

CALL EQUATEIX9R9NAN8)
GO TO 3'

i5 CALL ?A001(NANBXRvX9l.)
CALL SNORM(RNAqN89EN)

4 IF(ENeLcEEMAX) RETURN
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IFIIT*LT*ITMAX) GO TO 3'
WRITECKL!ST9114 EN
WUITE(KTEFM9111A SN

131 FORtAT((SOLUTION ERROR FOR #AICGT) AFTER 3 ITERATIONS "vi~PE15s

RET URN
3 CALL MAT1JAXtNANAtNBZZ)

CALL MTl(Z2,8,NA*N~tMBqR)
CALL "AC01(NA9N39XRR,-l*)
CALL AD1(NA9NBiDCqQ,±.)
IT=IT.1
GO TO 1.

C FND SlIBROUTIM1F AXBMXC

SUBROUTINE SLVSHR(AIJABNBCqND)
*CONMO/AIN/NINND1COM1(1)

f'OM*OIINOU/KIN, KOUTgKDU4CH
DjIENSION AINOti),B(NC,±),C(Nti,),V(6),W'd6

5 LMI=L-1
DIL-= i
IF(L*EQ*NF) GO TO 8

a LL=LN1L)
K i

if Kdt=K-t

IF(KeEO.NA) GO TO 12

12 KK=K4j+IC

AKKI=A( K,K)*11 BLL=9(LoL)
IP(CL*En.Z) GO TO 35
IF(O'(.E~o2) GO TO 2'
IF(L*.-o.i) GO TO 13
C (KL~raC(KL)-AKKI(DOT3(LI±,C (K(4) B(±,L))

13 IF(K*Ege±) GO TO 18
00 15 IzI,KMI

1L5 C ( K,9LI C(KL I-A (KI)*00T3(LsC(IgJ),8(19L))
18 V ( L) aA KBLL- i

IF(V(1).EO.§.) GO TO 99I C(1(,LIC(KtL)/V(il
GO TO 95

21 IF(L*Ellol) GO TO 22
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I3zLMi
GO TO 24

22 IFIK*EQ1il GO TO IC

12=KMI

24 00 28 1=11912

C(KL)=C( KL-A(KI)V(i)
28 C(KKL)zC(Kg(,L5-A(KK, IIOV(I)

IF(liteSOKI GO TO 2?
3~ V ( =A KK* BLL-i.e

V(2)xA(KKqK)'BLL
V(3)zA(KsKK)#BLL
V(4)=A(KKKK)*BLL-i.
V(S):.ol.(Vl1)*V(ld-V(2)'V(3))

GO TO95 -

35 IF(CK*EO.2) GO TO 5-
IF(L.o.01) GO TO 38-

12=K

3A IF(Kor-Oai) GO TO 45

4- 00 4? I:11,12

Ir (Ii. EC. K) GO TO 38
45 V(i)=AKK*BLL-1.

VIZ I=AKK*P(LPA.L)

C(K,LL)=V5)*(Vt±)*C(KgLL)-V(2)*C(KtL))

GO TO 9S
5~ XFgLeEO*i) GO TO 55

V(2)=f0T3(LMiCCKK91jB(iL))
V(35=DOT3!(LMivC(Kqi)9B(1,LL))

C(KL)=C(KL)-AKK*V(1)-A(KKK)'V(2)
C(9K,L)=r(KK,L)-A(KK,K)*V(1)'A(KK,KK)'V(2)

* C(KLL):C(KLL)-AKK*V(3)-A(KKK)'V(4)
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C(IKoLL~zC(KKoLLI-A(KKK)*V(.3)-AKKKK) V(4)
55 !FIK*EO.1) GO TO 65

0O 6 11,Kid
V(I~uOOT3(LLvC(!.1),8(±,vLJ)
V(Z1z0013 LLcII,1) B(1tLL))

C(KvLLlcC(KvLLJ-A(KrIRv(2)

65 V(1)=AKK'BLL-ioI V(2)=A (KK 9K) 4BLL
V(1 )=A(KKtL,*BLL

V(5l)AfK9KKb'3LL
V(S)=A(KK,KK) 'BLL-le

V(8)=A(K9KKlK)'B(L9LL)
V(el)A(gK)( BLLLt
V (1 =A K(L, BL,
V (3i)AKK*BlLL9LL)-i*
V(12)=A(KK'()*3ILLPLL)
V(13)zA(K9KK) '3(LL9L)
V (i4)=A(KKqKK)*B8(LLjL)
V(i5)=A(K9KK)*BfLLLL)

W(2)=Co(KKL)
W (3) ='K , LL)
W ( 4 )=C(KK,9LL)
N!SN1M

N01144!)~f

CALL DOOLIT(4tVWtiISG)
N D 114N S
NDIML=N01 1+J.

95 ~KK+0
IF (KeLS.Nl) GO TO V
L=L4DL
IF(LeLE*NBI GO TO 5
RETURN

9Q WDITE(KOUTIVI)
RTTURN

lur 1 FORMPAT(~ * 'ERROR TN CGT SOLUTION1 A±±-)pA230*)
f C ENO SUBROUTINE SLVSHR

-~ I EMO
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SUBROUTINE EcNORI(AtNRNC#ENRM)
CO0M MON / 0A I Ni/NO I ,N 0 1 MC91 (1)
DIMENSION A(l)

ENR'"='.

R=TURN

CEDSUB~OUTINE CGTORM

CONMICN/FI LES/KSAVE, KDATA, KPLOTiKLIST,KrERg

I IND!M1 OTCALL FMt4UL(RKXAli,NRCNN0,NNCKXA'.1)
CALL MADD1(NK3,NNCRKXA1±,A2iPKXA~I,:.)iiCALL MATLST(RKXA11,NRCNNC,"KXM~,KLIST)
CALL MATLSrCFKXA1±,NRDNNC,"KXMVKTrRM)

CALL FMM'UL(RKKAj2,NRt~,NN0,NRZC,RKXAj2)
CALL #ADDI(NRDNRCRKXAi2,A22,RKXA12,1.)
CALL MATLST(RKXA129Nf;DtNRC9"KXUOKLIST)
CALL MATLST(RKXA12,NF09NRC,inKXU*0,KTrr~m)
IF(NO~oLT.13 RETURN
CALL FMUL(KXtA3NPDNND#NCRKXA!3)
CALL MADD1(NRO, NODKXA13,A23R(XA13,j.)
CALL MATLST(PKXA3Ni;ONDD0inKXN~,KLIST)
CALL MATLST(RKXA13,NRONDD,'KXN*0,KT---mI
RrT UP. 4

C FND SUBROUT~TN' CGTKX
END
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SUBROUTINE C5VAL
COMfIONPAININDXNNDItCO'I1(1)
CO#IMON/INOU/KIN ,KOUTK*UNCNI ~ ~COMlMON/OE SIGN/NVCOP1,TSAMPLFLRPILFLCGT ,LFLKFLTE VAL gLABORT
CO'INON/FILES/KSAVI , KOATA, KPLOTKLISTKTERM

I I CO?9?ON/SYSITX/NVSIISM(1)
CON'ION/Zt TXI/NVZ'4,ZMI Cu
COMMON/ZMTXZ/ZIZ(1I
CO#4MQN/NOIMU/NN~3NROHP0,NMDNl)ONW0NWDO,9NPL0,NWPN4WONNPR

rCOM40IN/NOI#1C/NNCIKRC,?JPC

CO'QION/aREGIPI/L XOWtLUCWLPHCLLKXL(Z
* t COMMON/CFEGPI/NVRPIoRPI(1)

F O~TMSNSICN NPLOTI2),NVPLOT(±i ),NS(63'LSCL(Z)hITITLE(5)
DATA ?JC/iHN/

* WRITE( KLI T911 1)
FORPAT(////IIX,5("* ,)CONTROLLER !:VALuA1ION**95C' ),
IPOLE=1

V~ NVOU1=NPDNPD~.
IF(LFLCGT) J7,1791j5

is WzIT-- V~6
RE A 041um 9vIJm
IFtLUM*LT.1) GO TO 7'
&F(IUMoGTeNRC) GO TO 15

NVOUT: NVOUT4NPC
NP N NC
GO TO JS

V7 IF(IPOLEeEO.1) CALL POLES(RPI(LPHCL),NNPRLiZM19ZMZ)
N P=4

18 CALL VOUTIC(SNNVFLOTNPLOTNVOUT,LSCL)
IF(NVOUTEQ~r) GO TO V

2" WDITZ 1 8
RZA94,TEND

!F(TEND) 2PJ92:925
25 L =VU~

LX'.'#LVX:'4NVOUT
LXijLX)4NPLO
LXM4 zLX±, NPLD
LW41=LXM'W+NP

00 26 I=LVXUND
26 S!0()=20

CALL CTEPS(V"*~S(X)*MLLqMLM)PMLM~
I ZM1,NVOUT*TEND9IUNVU4NST)

M519NST
0O 4.~11, 2

4S (1)zl
00 28 J:2,6

20 NS1J)zNS(J-1)+51
N~uNPLOT(I)
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190N0 .V-.7) GO TO 41
NPPLZNP4i
REWIND I(PLOT

CALL RPLOTF(ZPi1,NVOUTIEQ.R)
CALL STFPLTISP4,ZM1,NS,NVPLOT(NSV),NPNVOUI)
00 35 J=19M
CALL RPLOTF(ZiNVOUT91IERP)p IF(IEFqofFo.1 GO TO 4r
IF(MO)(JNST)&NE*. ) GO TO 35
DO 31V K=1,NPPI

CALL. STFPLTIS4,ZM1,NSNVPLOT(NSV),NcNV0UT)
35 CONTINUS

CAL.L PLOTL15NDSMLSCL(I),1p.-,KTi'4,ITITLE)
4t CONTINUE

N V N V CUT- i
M=NVM4/5

IF(t4--0.Qt) GO TO 5o
DO 5F 1-19 N-,5 I
00 'tz J=296

RrWINO I(PLOT
NVSI-i
00 45 J=195

45 NVPLOT(J)=NVS+j
0O 51 J=iqlll
CALL RPLOTF(Z'IINVOUT9I7EZR)
IF(IERE0*1) GO TO 55
CALL SThPLT(S4,Z~iINSNVPLOT,5NVOUT)
DO 4! K1, 6

CALL PLOTLP(ir,±,5,S'1,,IlKLISTITITLr-)
55 CONTINUE
156 NVl4VM-NE

IF(NVM*LT&1) GO TO 7F.

j NS(±31l
DO 57 IS2*6'-~'1 IDI SR IslNV1

58 NVPLOT (1)zNS.I
REWIND KPLCT

CALL RPLOTF(ZM41,NV3UTPI7RR)
IF(ISRR*EG.1J GO TO 71
CALL STRPLT(S.4,ZM1,NS-,NVDLOTNV'4,NVOUT)
03 6n~ J=lPPI
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61? NS(J$=NS(J)+1
65 CONTINUE

CALL PLOTLP(1'1,NVMS91,1,1,KLISTITITLEJ
70~ W-PIT 11.14

READ 1119TANS
IF(IAtKS*EQ*NO3 RETURN
ID0LE3l
GO TO 1'

1(1 FCRMAT(** ENTER TITLE IN GIVZN FIELD ji in,/

irz FORM'AT(5A1R)
1!'. FORMAT( *MORE T114-- RESPONSE RUNS (Y OR N) *0)
t 6 F0RMAT("rENTER M4ODEL INPUT AND STEP VALUE 1 1 31-)
I'S FORMAT(" LNTER TIME~ DURATION FOR RESPONSEt IN SECONDS ~

- . III FORVIATWAI
C END SUBROUTINE CEVA.

END

SU9RnUTINf VOUTIC(ViCNVPLOTNPLOTNVOUTL.SCL)
COMMION/DSIGN/NVCO'tTSAMP,LFLRPI,LFLCGTLFLI(FLTE'VALLA30OQT
COP!4ONIFILE5I KSAVE, KDATAKPLOTKLISTKTERM

CO'lM0N/N0'!IMCNNCqKRc,NPc
CCtA"fCN/NDIP'T/NNT NrTqNM1T9NWT
DIMENSION NPLOT(±JtNVPLOT(l),VIC(1),IOUT(53,tLSCL(a)
DATA IOUT/IHX,lHYIHUIHM9iHo/
IFILTEVAL) 292,5

2 NVS=NND
NV=NFi-D
GO Tn 8

15 NV=NOIT

9 NVOUT=NVOUT4NVt DO 9 1=1tVOUT

NVU=NV+NPD
NV MN VU+NF

2'I1. WRITS lt±,tNVS
IC. I FORMAT tooENrER STATE AN'O IC VALUE (~TERMINATES) 1 ,129" 2.")
12 REAO',IVtV

IF(IVoLT.1) GO TO 15
I; IFfIV.GTsNVS) GO TO 1!

V'C (IVIV

GO TO 12
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1I2(IVeLTel) GO TO 26I !IIV9GToNDDW GO TO IR
VIC(NND+IV)zV
GO TO 20'

26 HPITE 1'3
1103 FORMATIr 2 PLOTS OF 5 VARIABLES MAY BE PRINTED AT THE TERM~INAL

1SOECIFY NU4BER FOR EACH ENiNZ) 3M)
REri 0, NPL OT t) , NPLOT (2)
IF(NcLOT(13.GTo5) NPLCT(Ilz5
IF(1NOLCT(2)*GT*5I NPLOT(2)5Sr I~F(NPLOT(1I.GT."5.OR.(NPLOT(2b.GT. P GO TO 27
NVOUT'?
R=TUR4

1 4. FOR4AT(" fNTER OUTPUTS BY TYPE AND INDEX A.N 2 ENTRIES--TYPES AR'-:/
1±* STATE I OX"I m OUTPUT I 0YOO/ INPUT I fU#*)

IF(LFLCGT) 3U,33,2Z9
?s WI'ITE ±rl5
1tS FORMAT(" MODEL I OMO**

IF(LD.EO911 WRITE 1"'6
1!E FORMAT(" CISTURRANCE 1 600")
33 D) 4. 112

NS=?40LOT II)
IF(N%~LTo1) GO TO 41*II LSCLII)=l
NF=5*(I-1)
WRITZ 1'791

Ift7 FORMAT("sVLOT *,12)
00 39 J=1NC
NSP=NS+J

R-AD 1119!V

WnITE 113

I;*(IV*NE*IOUT(l)) GO TO 32
IF(IO*GToNVSI GO TO 38
NVPLOT (NS F) :1
GO TO 39

32 IFIIV*Nc..IOUT(21) GO TO 321
IFIIOeGTedaPO) GO TO 38
NVPLOT(NSP)zNV.IO
GO TO 39

321 IrfIVoNE*IOUT(3)) GO TO 33
XF(IOoGT*NPDP GO TO 38
NVPLOT CNSP~zNVU+IO
GO TO 3q

33 IF(LFLCGT*LToil GO TO 31
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JF(IVeN~oIOUTfidI GO TO 34.
VX110O GT* K'PC) GO TO 38
NVPLOT(NP=N41
LSCL(X )u-1
GO TO 39

* 316 IF(LO*NE.j.) GO TO 31.
v I1:(XVoNEeIOUT(5)b GO TO 31

* IFIIOoGT*t400) GO TO 3C
NVPLCT (NSP)zNVS+IO
GO TO 30

3e WITE V~9
V~9 FORMIAT(" INDEX TOO LARGE")

GO TO 31
f39 CONTINUE

4- CONTINUE
NJifZ=NVOUT-1L

Df) 57 1NVMI

ItMODI-09
IFMe)GO TO 415

jjc IV:IOT(?).LT v2
41 IF(I*GNVSGOT(6

GO TO 45
k4 IF(IoGToNV) GO TO 44

IV=IOUT(5)

GO TO 45

IV=IOUT(P)

IO=I-NVU

51 CONTINUE
RtTUPN

Ill. FORMAT(A±)
112 FORMhTt" OUTPUT ,I2964I ,*AIt12)

C END SUBROUTINJE VOUTIC
END
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SUBROUTINE CT~kESPfVX0.PVX1,X7.1X:X~,MVU,~OIMVM
I 4STS X)MtM.PMPNO~TNtUOU

CONNON/OurS!GN/NVCO4,TSA?9PLFLRPliLFLCGTLFL'(FtLTEVALLASORT

COtlNON/NIO/NDN9RONPN4DNDNW~,NWOONPLCNWPNW0,NNPR

COtMOI/DSNMTX/NVO'INOOVNOEVC4(l)
COMMON/NOIMC/NNCqNRCNPC
COMI4ON/6OCC/LPHC, L3OC ,LCCqLOC
C*'44NCMMTXfNVCMNFWCMNOOCCM4-)
COI4MON/LOCT/L~tiTLBOTLQOTLNTLPTLTDTLTNT
COMt4ON/TD!UMTwNVT,Tt4(j)
C3'140NLREGPILXOW,LUOWLPNCLPLKXLKZ
COMMON/%PFGPI/NVRPtRPI(I)

NrTPO .)'r*EN!/TSA'4P..5
MSTZZ
IFtNSrPO*GE1I) GO TO 1.
NSTOOz
NSTZI
NSTEPSzl. 'NSTPO
IF(LFLCGT@E2.*J) GO TO 2
L4O=NV/OUT-NPC
IF(NDC*EO*t'J GO TOJ 4
L9#% GT= 1
GO TC 5

4 LY,'GT~l
5 LU=,LMO-Nc r

XOn(7 2M))

.. '~ I ALL WPLOT(VX,1,ICUT)

CALL URPN(itRPI(L1,RP(LZ),DM(L)OLOY),XX,Xi(S(U) VX.L
IFlLFLCGToEo 2 AL Y,42XII~jUvC(Cl15I(C~

15 CAILL CTVMLO)X(UP)X~1X(NP)ZMUUT
CALL CUPLOF(X19Nx'VUUN

2! CALL UFT'4TXP(XL),VX'(LU),NDMLI O(D1XtlV.,L1V4.L

IF(LTEVAL) 259259,
25 CALL OUDTDMH)9NLO D(LH)91(E)9- i
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I VX1,V)('(LU19LOCGT9N~nCPi)
GO TO 35

3n CALL TUPDAT(T4I(LPHT),PTILBDTlVX(,gVX1, E. (LUS)
CALL XFOT(VX1,K1,LtNCGT)

35 lF(NOD(ITtNSTPO)9NE.t) GO TO IVn
VYI tNVOUTI=TSAt4P*FL OAT (Ii)

A CALL YOSN(XIVXi(LU),DM(L.C),DI(LDY),LDCGTVXi(LSO))
IF(LFLCGT*E~o.) CALL VCDX~I~VMO(C~C(O~

i VXI(L'4O))
CALL IPLOTF(VX19NVOUT)

I I,* CONTINUE
ENOFILE KPLOT
RtTURN

- * C =NJO SUBROJTIIJE CT'RESP
EN 0

S'J9ROUTINEr OUPAT(PHI,,0PHICEXPXJXVX,tU",LCGTNN0Pl)
COr'IO/AINI/NOIIINOIMiCOMI (1)
CO'MON/NnIMO/NND0,NR~09NPONMDqND09N!,NW0,'4DDNPLD9 NWPN'd09N4PR

N!!M=NN!2
N,!IM=N0!M~i
CALL FMPIUL(BOvU'vNND9NRfl,Pi9X±)
CALL PMULS(PHI9X 9NNONNDIXl)
IF(LflCGT*EOof) GO TO l)
CtLL FFP'UL(PHIOXj(NNOPiJNON004,oXi(NNUPI))
CALL 4'ULSIEXX±(NN3Pi~tNNthNDD,1,X'-A

I.- CAfLL VTPTX(XIPVXi9NPLDi)
R1TUPN

C END SUBROUTINE OUPDAT
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SUBROUTINE~ CUPOAT(XMtqgXm41,IU",VUm)
COMMON/"M INi/N9INNOXNICONtI(13
C0MOMN t/N D 1C1 NN C , NRC,9 NPC
C 0t4MD40/LOCC/LOHCLBDC, LCCLDC
CO9IIN/C#DWTX/NVCM4, N WCMNOOCCN (1)

NDIM4NNl

CALL FT'ITX(XM19XN;,NNC,)
L aLa 8 ( tJNC,9±, U M) .LB8DC- I
CALL VSCALS(X~it,CM(L1)9NNCipVU4)
CALL MIPULS(CM(LPNCJ ,tX'NNCNNC,±,Xll)
RSTURN

C FNC SUBROUTINE CUPOAT

SUeROUTINF TUP3AT(P'4I,8),VX~ VX±,U-)
CO4M0N/MAIN1/NDINN1j.,CO1(1)

* COMIMON/NDIMTNNT9NRTtWMT9NWT

* N)IM=NNT*~N 1 NO41= NflI M~
CALL FTMTX(VXLVX~qNKT91)
CALL F1UL(90,U: NNT,N'RTq1,VX1)
CALL MMULS(PHI, VXv NNTNNTi, VXL)
R:TU--N

C FNO SUBROUTINi TUPDAT
El!
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SU9fROUTINE XF)T(VXvLDCGTI

COt4ION/NDIMT/NNTo, TN'TVNWT
COMMON/LOCT/L'NTLBOTLOOTLNTLRT, LTOT 9L TNT
COtINON/TRU4TX/NVTI,1#9(t?

ii CALL FPMULITMgLT0T),VNNDNNTviX)
IFlLDCGToEO*.i RETURN
CALL F'4wUL(TM(LTNT) ,VNDNNT,±,X(NND~i)

C END SUBROUTINE XFJT

SUBtROUTINF URPI(.R'XKZCD)YXLX±pU,"Ui)

C3MMON/NOIMD/NNO,N .DoNP0,NMDNUDNW3,NWt0DNPLDNWPNWDNNPR

CALL YDSN(X%.,,UlqC9tYCqU1)
if,~ CALL VSCALF(Ul9Ul9NRO,-1.I

CALL MULS(;IZ79UiqNR09N~C,±,U. I

CA~LL r$HMUL(RKXX,N,Nr3NDt,±,WJ
CALL VAD~DNRD,1.,UIvU')

C NDSUBROUTINE URPI
'END

SU8IROUTIN F UCGT U.U1,KUl , 9XMI 9ODI1FVZ41.IUM, VUUIT)
CIMOrJMAIN/NOT,NIMjCOMj(j)

CO M3ON/ND IMfNN 0NRD NP09 NMD 9N3ONW09 NW CD NPL D, NWPNW0, NNPP
COM4MON/N[!IqC/ NNC, NRC, NPC
CO#4NON/LOCC/L0HC9L33C ,LCC9LOC
COMON/V-M0TX/NVC~NEWCMqNODCqC'IWi

*1 COINf4N/LREGPI/LXOW.,LUOWLPHCLLE(XLKZ
COMMION/CFEGPINVPIqRPt(iI
CO94ON/LCGTILAL1,LA13 ,L*24,LA23,LA1ZLA22,LKXAIIPLKXA2L(XAI3I
COMI1ON/CCGT/NVCGTtC GT (i)
DI"ENSION Uj(±),U1(1)S'4;(±),XML(I)ODCIF(4 &1,ZMI(J)
CALL vCMDtXmlIUVUrnCwU.CC),C4(LDCIU )
IF(IT*GT*1) G3 TO iX,
I=L,(A12+LAD~NPDqi,!UMl-i
CALL HAD1(NP0,19UiCGT(IIUiVUM)
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12 CALL MMULS(RPI(LPCZ),UlNOIM,NDrM,,U±L)
00 12 1=19N4C

12 X40 (1) zXHI (D -XMl (I I
CALL FPIMuL(CGrwLKXA11),Xt5NfNpoNNC,1,u')
CALL VAVtD(N312Plov.Ul9UJ9
IF(NVOD*EeP)f RETURN
00 14 I1,NDD

CALL M4?UL(CGT(LKXA3),CD!lFNPDD,1,UI)
RCTUON

C FNO SUBROUTINE UCGT

SU9g:OUTINE YCSN(X,U,C,D,LDCGTY)
CC/"AIN/NIN,'JI~q3I1.,COMI (1)
CO'IMON/NOIMO/NND, NRO, NPO, NMD ,NgONW3, NWCDNPLO, NWPNWO, NNPR
C OMMON/LODCO/LAP 9L GvvL PHI,9LBD, L E)(,LP HDLO ,QN, LQ09,L CLOY 9L EY 9L HP Lrk
C'It"ON/DSNMTX/N VON,NODYNOEY,04(l)
DIMENSION Xfil9U(l)9C(j),O(±h)Y(i)
ND! M N00
NDI'i=N3IM+i
CALL F*41UL(CXNPONNO,1,Y)
IF(NOT'Y*EO~l) Go TO 1?
CALL MM S(OqUNPDNFDqiY)
IF I((LD-CG f 9 E09 ) 9OQs(NOE-Yo E0.1) ) RETURN
CALL MMULS(DM(LEV),X(NNO.1) ,NPONDO,1,Y)

C END SUBROUTINF YOSN
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SUBROUTINE YC'ID(XIUVUCOy)
CO'l4ON/MAINi/NDIM9NDIH1CO4±c1)
COMM4O/NDIC/NN C-lNPCpNPC
CO 14ON/CHlDMTX/N VC49 NEhkCI, NOOC 9C (±L)
DIMEjNSION X(l),Clj),D(j),Y(1)

I NDIVINPC
N0141=NDIM?4*
CALL FIV4UL(C*XtNPCvNNC,±,Y)
Iv(NOOC*EO.LJ RETURN

CALL MAtCDi(NPCq1,YD(Ll)9YvVU)

C END LXZLADDP(NP CMDIU
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StJMOUTINS FLTRK(IFLTP)
COMMON/MAIN1/N~IHNOMlCOq±(1)
CO'4HON/MAINM/OM~ (1)
COMM0/DE SIGN/NVC3MtTSAMPLFLr%0I LFLCGT 9LFLKcF LTEVAL9L ABORT
CONMONIFILES/K'SAVr, KOATAPKPLOTKLISTKTERI
CO'9MON/SYS'1TX/NVSAISm(1)
COMMON/ZMTX'r./VZ1,ZMI1(ll

COMON/NIO/NNN3,NP,N4ON),NW,NWJNPL,NWPNWDN4PQ
COt4NON/LOCO/LAP .LG0,LPHIPLBD,'LEXLPH09O,.OLQNLQ0,LCLOYg,EYLHPLi
COI1NON/LSN4TX/NVi'4,NCDYNOEY, DM( )
COIMOtv/L'(F/LE4DSNLFLTR(,LFCOV
COMMPON/CIKF/NVFLTjFLTQ()
IF (N'PNWr- GT, j) GO TO I
WRITE (KrEFmt 1'81

Ife FC4MfiTV NO ORIVING POISc-S - - FILTER~ 2ESIGN ABORT)

£ Ic(N4Oo.GTe*) GO TO 2

io 9 FOR'4AT(' LNO MEASURF4ENTS - - FILTER DESIGN ABORT")

2 WZITE-(KLI!!Tgli'J
N SI ZE = NL "' i +NPL D+N M ')
.4 (N(IZoLEeNVFLT) GO TO 3

V'2 F,"I1ATV- INSUFFICIENT MZMOPY /CKFI, NE."-CI "914)
L63OFT=NSIZE

I N' IMNPLD

5 lrNW~oO~t)GO TO 6Z

CA&LL MALST(ZMl-NWD,1, 2vKTR4)

12 IF(NWZ)o.E0*. GO TO 18

1"7LTalel O O1
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CALL ROWGTS(DA(LR) ,P1D,r 1
19 CALL DVCTOR(NNDOt(LR)tZM1)

CALL MATLSr(Z't1,NMO1,'KTERM)
2') CALL MwATLST(04(LIN"DN40OR",KLIST)
25 CALL. TFFMTX(D4ILtP),SMN'4D9NDII1,2)

CALL TRANS2(N40qOII9SMZM1)
LrCOV=LFLTRK*NDI M*NMO
CALL DVCTOR(N4DOM(LR)qFLT(LFCOV))
CALL KFLTR(NC1lNMDFLTZ~iDN(LOO),FLT(LFCOV)Z4Z,

1 FLT(LFLTFK19S4)
CALL TFU4MTX(S'tC04?,NDIMND'4,2)

*FLTtLFCOV-1+I)zSQT(Z42CIAJ1

* CALL t1ATLST(FLT(LFLTRK),NI'4,NMO,'KFtKLIST)
CALL ?IATLST(FLT (LFLTRK) ,NDIMNM),1(FtKT-kM)
IFLTq~i
LFLKP~l

Ili Fn'RMAT(A7)
R-TUOrJ

C END SU'3ROUTINE FLTRK

*T 0
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SUBROUTINE FEVAL

COMM#ON/MAIN1CO'4Z(il
COMPION/INOU/KIN, KOUTKPUNCH
COMMON/Ot'SIGN/NVC3MTSAMNPLFLRPILFLCGTLFLKVLTEVALLABORT
COt4NON/FILESII(SAVE, KDATAKPLOTI(LISTKTEII
CO4.4ON/SYSPITX/NVSNSM(i)
CONMCN /ZMTXL/NV ZtlZII()
C0ON/ZMTX2/ZMZC±J
COMMON/NDIMD/NNrjNRDNPNlDN!3,NW2,NwtrDNPLDNWPNWC, NNPR
CO"MON/LOC~DLAPPLGPvLPHI, LB0,LEX LPH99LQ9 LQNLQD,9LCLOY ,LEY, LHPL
CC0PdCN/OSNMTX/NVO~,NOOVNOEY ,DM(i)
C3C4NITNNTvNRTN1T9NWT
C04MON/LOCTILPHTLBOT ,LOOTLHTLRZTLTCTLTNT
COMM3N/Tl;UTX/NVTMqTl(1
C *IMON/LK F/LY AD SN tL LRLFCOV
COMMtON/CKF/NVFLTFLT M)
OI'IENSIO.N ITITLE(5) ,NS(3)#NV0LOT(2)
IF(NWTeGT*.A GO TO 1.
WcITE(KTEFM,1"'8)

VSFORM4T(*' NO TRUTH MODFL DRIVING NOISE S FILTER EVALUATION ABORTE

wl -IT:( KLIST, 1i.)

CA'LL F#*QJL(COM,FLT(LEADSN),NPLDNP..DNPLJSM)
CALL POLFS(SNNPLD959ZMl9ZM2)
NA=NNT.NPLD
NSIZr-NA*NA
IF(NSlZEeLE9NV1SM) GO TO 8

j. WRITE 1.1,NSIZE.4 IjI FOR'ATt(rINSUFFICIENT ME'ORY /SYSMTX/, NEEDS "91Lt)Ii GO TO 9
8 IF(NSIZEeLE9NlZM) GO TO ±3

W=ITE 1?39NSIZE
JV- PIAT("iINSUFFICIENT MFMOFY /ZMTX1//ZPITX2/9 NEEcl "14

RETURN
Ir CALL ZPAFT(S14,iSIZE,1)

NCIM=NPLEl
NrIML=NDIM*1
CALL TFRmTX(Tl4(LRT),ZM1,NmtONMDp2)
CALL MAT3 (NPLDgNM09,FLT(LFLTRK),vZ4ZiCOMI)
NVOUT=2'NPLD~l
REWIND KPLOT
CALL DACOV(SNFLT(LFCCVI,ZM1,ZM2,NANVOUTtr.)

ii~0 DO ITcl,5%
TTHE=TSAMF*FLOAT(IT)
CALL. ACOVUDgSM'lTt(LQT)CO~iTM(LPHT),FLTILEADSN)9

1 COM2,Z"J ZM)

CALL DACOV(S?1,FLT(LFCCV) ,!ti±Z'2NANVOUTTINE)
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2m CONTINUE
ENDFILE KPLOT

REA(KIN9012) ITITLE
0O 5u IxlqNPLD
REWINa KPLOT

NVPLOT (D. r1+1-1.
NVPLOT (2) :1+1

) 4,; Jz' 951
CALL RPLOTF(ZIII.NV0UT9IERR)
IFCIT-RR.EO.±3 GO TO 5.2
CALL STFPLT(S'IZMIPNSNVPLOT,,NVOUT)
Oil 35 0193

3 5 NS IK) zNS (K)4+1
4" CONTINJUE

WRITE £.!7ZMIINVPLOT(jIlIZMI(N4VPLOT(2))
V 7 F CR4A T (0*%'FINAL RMS ERPORS I TRUE z "9lP1l!.7/*o (STAT -VI3,

I *)",4X"CO1PUTE0 = "sLPE15*7)
CflL.. PLOTLP(5I,2,SM,-Igi,1gKLISTITITLE)

W9.IT=(KLIST,6) IIjr F FO MAT too STATE 1 -912//4X vSYM 3 0L 1 1 RU r -R E ROP/
I L.X,*OSVMP+OL 2 1 COMPUTED ERROR /

S! C '-NT I NUE

If RTN ENTER TITLE IN GIV4, FIELD
12FORMATBAVO

C END SUBROUTINC FEVAL

SUPROUTINF OACOV(DCAPCZM1,Ze12,NANVOUT*fIME)
COMMCN/FILE-S/ KSAVE,'KDATAKPLOTKLISTI(TF(M
COMNNION~N0N~N~N~N0NOoP0(WNDNP
CO4MON/NDIPT/NNTgNRTtNMTsNWT
CORMON/LOCT/LP94Tt8OTLQOTLHTLRT, LTDT,LTNT
C 0 14MON /TP U T X /NV T M9T M 11
0IMENS TON PCA (L) DC (1) ZN(U±),PZM2(H±I
NDINzNA
NOI!'izNDI M*1
CALL TFR'MTX(T4(LT!DT) ,ZM1NN0,NNT*2)
IF(NO3.LT.1) GO TO 5
IAULAD33v NDNNO+l,I)rCALL TFQRMTX(TM'(LTNTI ,Ztli(IA) ,N0),NNT,2)

5 CA~LL SCALE(ZM1,ZNIPNPLONNT,-1@)
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ZLA3 OR I NA91 9NNr.±?
CALL IONT(NPL0,ZM±(IA)oio)
CALL lA73 (NPLONA9Z'4iPCAZM2)I WRITE(KLIST,1311 TI'IE

1t1 FOR'lAr(-: TRUrf DESIGN ERROR COVARIANCE AT TIME " m Fb,4)
CALL MATIO(ZM29NPLDNPLO93)
lAul
30 V4 ImiPNPLD

ZNSI :SQRT(ZP4Z(IA) I

Z41(NS)=PC(I)
1'0 IAzIANIV4I

CALL WPLOTF(Z~itNVOUT)

C END SUBROUTINE OACOV
'EHO

SU~BROUTINE ACOVUDtPCQDRKI(TPHITDHIQIMKH9iZ41?)
COMMtON/?AIN/NDI~4NDIM±,COM± (i)
COMMO'4/ND IMD/NND, NRD, NPC, NMD, NDNW), 9NWCD ,NPL CNWPNWD, NNPFi-
COMIfN/NVfYIT/NNT Nc.TNMTNWT
COMMOI/LOCT/LPHTLBtiTLQDTLHTLRT, LTOTLTNT
COMMON/TlZUMTX/N VT9,TM (11

* COPVON/LKF/LEA0SNLFLTRKqLFCCV
COMMON/CKFiNVFLTJFLT(1)

CALL ZPArT(ZH2ZLihNNTqNPLONDIM)
CALL TFFITX(PHITZM2,NNTNNT,2)
Lt=LADC ( NDlt4,NNT41. ,NNT41)
CALL TFFmTX(PIIZ,2(Ll),qNPLVNPLO,2)
L?=LAD0I ND14,N'JT+,i)
CALL ZPAFT(ZM7(L2IJtKPLONNTvNE)IMI
CALL MAT3(NOIMNOIM,!I42,PCqZM1)

*CALL FPAOO(Zt4JNOIMOCoNNTNNT,1,pc)
CALL lDNT(NNTZh9Z,i±)
CALL FPMtUL(FLT(LFLTRK),TN(LHT),NPLCNMDNNTZMI)
CALL TFRMTX(749Z42(L2)9NPLDsNNTv2)
CALL TFCMTX(RLMI(HZM2(LlINPLDNPLD,2)
CALL 'IAT!(NOII,NDI.1Z,2,PCZMi)
CALL FPADfl(ZMiNDI?,RKRKTNPLDNPLOLIPC)
RETURN

C rNO SUeROUTINS ACOVUD
SND
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SU~iOUTINE FPA0D(XvNXtV9N.RV9NCYtLAD!)9Z)
DIMENSION X(1),Z(1IY(NR.YNCYb
CALL FTMTX(XgZtNXgN)
LA 4 zL ADD 1-i
D0 V2 I1,NCY

On Ir J=1,NRY
LAi=LAi~i

±: Z(LAt)=Z(LAL)4Y(J,ll

C END SUBROUTINE PPADO

ZND
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SUBROUTINE RSVS(A*LvNDvITVPjIWRT)
CONMON/OSSIGN/NVCOMTSAM4PLFLRPILFLCGTPLFLKFLTZVALLA9ORT
CO0tN/FILES/KSAVE, KOATAKPLOTKLISrKTERnI COWIION/SYSMTY/NVSISM (1)
OIM NSICN A(1),L(1i NO(Il)NAO(14,2) ,rN0(73),NTvPz,931,NTIrLE(S),

DATA N~TYP/791La39.,498/
DATA 'sO/11N/

* 2NT2$THITM1TH IH,14DATA INO/IHNLHRIHP,± ,1tHO,1iHW,2HW09DHNjigHq~n,2hP4,4(1H 19

DATA NTITLE/6H4DESIGN,7HCOMMANO,5HTRUTN/
DATA N4AT/1HA,±HSZHEX,1HG,1HQ,1HC, ZMOY,2HEY,1I*4,2HHN9lIR,2HAN,

£ 2HGN',?HQN24A4, 8P42HCM,2H0M±La(IH ),i9ATt2H0Tt2HGTt2HQTqZHHT,
2 2H'3TT3$TNTE(IH 3
NT"4:NTYPI19ITYPE3
NARzNTYPf291TYPE)
NT=NTITLL (ITYPL)
W-'IT..(KLIST,1/.) NT

5 W~iTv 171,NT
i!'1 F'IRMAT("READ ",A79" MODTL FROM ODATAO FILE (Y Ork N) ~

R: A3 litIANS
IF(IfltS*EO,NOl GO TO 12
1F±j
CALL RFAEFS(A,N~,ITYPEvIERR)
IF(IEPR*iEsL) GO TO 21'1

ir2 FnRMAT(** ENTER *0AT0 MODEL FRO1 TERMINAL (Y OR N) ~
R74C i11,IANS
IFIN*EeO GO TO t5
IF=2
00 i2 I1±,NDM
W;ITE 11i91NO(IITYDE)

±1.a FORMAT(" ENT9:R iA2, )V'*)

12 Rc-A0',ND(I)
GO TO 271.

IF: IF=3

16 CALL DSNti(ND)

17 CALL CAIOO(ND)GOT .

18 CALL TRTH'1(NDI
21 IF(NO(1I.GTeC)GOT '

WRITE 114,NT
1,14 FOR'4ATVm ',A7," MODc.L SUBROUTINE NON-EKISIENT m )

GO TO 5
2P1 IF(ITYPE-2) 21922923
2£ CALL CSNDt4INDNAW)

GO TO 25
22 CALL CPOOM(NOgNAD)
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GO TO 25
23 CALL TRTHC~fN~qNAO)
25 IF(LAeORTEQO.l GO TO 26I WRITE 1'3,NTvLASORT
103 FOR,4ATV1,INSUFFICIENT NM0ORY FOR~ ,*A?," MOOEL NEEO3 "914)

RST URN
26 L(11

90 3. I=2,NAP

NONTS=L(NAR).NA0(NAR,1J NAO( NAR, 2)-i
IF(NPKTS*LE.NVSM) GO TO 34
WRITE 1 '.,NPNTS

ip4 FOR'lAT(goi INSUFFICIENT M~tORY /SYSMTX/, NE-03 "914)
L ABORTuNPNTS
RETUR-N

34 ir(IF-2) 7593595u
35 I12

Of! 4. IzlNAR

NZ:=NAD(I,?)

*IF(Ni9EO@% )ORo.N2eEOelv) GO TO 4!
WRITE £13,NIIAT(I,ITYPE)

143 F0 MATMt...NTER ",AS)
CALL ZNAT IN(A(L(I))vNINZIZ)

4r C)NTINUS
GO TO 7

51, CALL ZPAFT(fiqlNPNTSvi)

S 5 CALL OSNM(A(L(i)),A(L(2)),A(LE3I))A(L('d1),AtL(51)A(L(6)IA(L(7I)
i A(L(8)),A(L(9)),A(Lti-')JAtL(11)IA(L(i2)) ,A(L(13)),A(L(L4)I)
GO TO75

61- CALL CM ML (0 ) A(L (2) ),A(L(3) ) 9A(L(4) )l
GO TO 75

651 CALLf')),M(L()l (I1t(()g((4)AL5)AL6)

75 17=t
77 W-'ITx I'SK IS FIRMAT(ol'MODIFY MATRIX ELEMENTS (Y OR N) ,"

QtAD t119TANS
Iv(IAKSoEO.NO) GO TO 96*

78 WRITE 1 7
1V7 FIRMAT(" ENTER MATRIX NAME 3,*)

R7A0 11I1ANS
DO Sr 1=1,NAR
IF(IAKSsE~oNIMAT(I9ITYPE)) GO TO 81

S, CONTINUE

@1 W*ITE 1169icFRAT*LS MATRIX TO TERMINAL (Y OIZ N) 1,S
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IF41ANS.EgeNO) GO TO '3
CALL MATLST(A(L(I)3,NAO(I,1),NAD(I,2),NMA(I,!TYP3,KTERI4)

G3 TO 77
9( ll(IWIT) 95992993

92 IWRTz±
93 WPITS 115,NT
115 FORMAT (**WRITz ,9A79 MOOE-L TO OSAVF' FILE (Y OR N) lW)

RSAO 11,1ANS
IF(IAKS.oE0NOl GO TO 95
CALL WFlLEO(ITYPENPNTSNOA)
I WRT=-
W2ITE 1t9,NT

-9 FOR'1AT(6XA7,-- MODEL WRITTEN TO *SAVE* FILE"m)
95 DO 11-i I=I,NAIR

Ni=NAD (T,.1)
N2=NAO,(1921
IF(Hi..EO,.,OR,(N2.Eno.)) GO TO IL
CALL MATLST(A(L(l)),NiN2,NMAT(IITVOE),K&.IST)

t% CONTINUEr
111 FORMA!(A33

RFTU N
C 7ND SU9R!)UTINF RSYS

SUBROUTINE DSND(NDl
DIMENSION N34i)

RET qN
C ND SUBROUT!Nr OSND

END
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SUJBROUTINE CMJO(N9)
OI#IENSION NOM1
ND(11z0

* C END SUBROUTINE CM4)D

SUBROUTIN! TRTHO(NOI
OIM74NSION NOW±

R=TUCN
C ENO SUBROUTINE TFTHO

StJ9ROUTINr DSN41IA,B,?rXGQC,DYEYHHD,R,ADG),OD)

END

SUBROUJTINE CM0M(A,B4,CM'qM)
~~RrTUCN

C E- SUIOUTINE CM:)4
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SU9R.OUTINrE TRTH'4(Ar,9TGTQTd4TRTTDTtTNr)

V iC END SUBROUTINE TRTHbI
END

SU9B!)UTINE DS4D'9(ND*NAD)
COMtMON/E SIGN/NVCOM 9TSAtMP 9LFLRPI 9LFLCGT 9LFLKF tLTE VAL 9LA30RT

COH'ON/OSNMTX/NVa~,NOOYgt4OEYO9(l)

n:NSIZNfl()(tvA(4

N'D=?'D (5)

NWDD=ND (75

NWPNWD2=NWO+NWOD
NNP1=NKC+O*D
N 10 (1 , 1) = W

MADO(2 91) NPO

NAL%(4,, 11)NND
NAD (5 9 1) wWW0

NAr0(6,p 1) =ND
NAD(t3i)N0O

Nt DIJ.4,1) xNMO'
NA(±293tNDO

NAD (13i)NDD
N A' T) 14 1) NWD!

N A0 (25, 2) z NRD

N A 0 (? , 2) z NOD
NAlD(9, 2)NN0
NADE±592) zNWD

I4AD(1i2)SNMD

NAO(12,92) ND0

NAO(i392l)aNWCD
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N AD (142) =NWOO
NSIZEjNPL C'(24NP10*NND+NND+NPD.IWPNWD) .NRD'(NND.NPD)*

I NDO"ND.ONID.DNWD*ONWDtNWOD'ONWDI IF(NSIZF*GT*VO41 L4BOR'aNSIZE

C END SUBROUTINE DSND'4
END

SUBR~OUTINE CMD9M(N1,NAD)
L COMMOI4/NDTMC/NNCoNRCNOC
a COMflON/cmtr?TX/NVP4NWCNN3'CPCM(l)

C0I'MOJ/DESIGN/NVCOMTSAVIPLFLRPI ,LFLCGT ,LFLI(FLTE VAL ,LA3O0T
DIMENSION N3(L),NAO(14,2)
NNC zV1 U I
Nr C=Nf (2)

NAL i, 1): NNC
N8O)(2,oIPNNC

NAO(4,i=P
NAD (3L,2)z tlNC

HAD (3, 2):xN%'C
NA CA (4,#2) = tJFRC

-NS I Z!=NC ( NNC NRC NPC) NPC NRC
IF(NSIZ;.GTNVCM) LABORT=NSIZE
RrTUON

C ENV SUBROUTINE CM30'4
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SUBROUTrNE TRTNOPI(NoqNAD)
CO9INON/DESIGN/NVCOMTSAMPtLFLRPI ,LFLCGTLFL'(FLTEVALLABOAT
COMNNIN/ 9P~NDNDNDDNWDNWC0,NDLDNWPNW0,NNPR
CflI4?ON/ND I T/NNTiNRT, I4MTNWT

* COMMON /TP U4TXNVTM TM (i I
DI'IENSION N(IAI42
NNTr-ND (1)
NRT=ND~(2)
N1IT=ND (3)
NW? =NY(J.)
NAO(±,±)=NNT
NA Ll(2 9 1) NNT
NfA( 7

9 1)zNNT
NAOI(/Aj)=NWT
Nl ND (59 1) z NMT

NAD(79i)=NIT
NAD (7,l)=NN

NADf(1,2)=NNT
NAD (2, 2)=NPT
NAO (3 ,2)=NWT
NAB 14, 2)=NWT
NAO, 04 92)=NNT
N Ab fr, 2) =NMT
N A 0(7 9 2) =NNT
Mao (5,2)=NNT
NSIZE=NT(2NNTNMDNRC.+NPLO) *HC.N4D
IP:NSXZt:.GT*NVTM) LABORTNSIZE

C NIC SUBIROUT!Nr TP.TIDP4

S'J9ROUTINE ZMATIN(A9tJRNCqIZI
DIME~NSION A(NRNC)

1 00 5 I=±,tip
00 5 JultNC

A5 A(ItJ)Z~o
123 WRIT% 1V±NR9NC

<1 ZFII*EQ*r) RETURN
IF((I*Lr-eNRI.ANO.(JeLEeNC)) GO TO 2,.
WRITE 132
GO TO L~

IF(IZeLTot) £(JtI)=V
GO TO 15
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£1.1 FORMIAT(" ENTER IJ AND MIJ)--(V/ MEN COMIPLETE) 8 '129' BY "12

iIV2 FOQ?4AT(* ERROR~ IN ARRAY INDEX")
C END SUJBROUTINE ZMATIN

END

SUBROUTINE WFILEO(NTNPPNDA)
CnMN/IE KA~ KOATAKPLOTKLISTKTERI
DIMENSION ND4iw '1AWN)
DATA IEOI/-i/
BACKSPACE KSAVE

WPT':(KSAVE-j9ll) NTWP

I.V WRITE(KSAVE*1121 (A(I)qIIvNP)

L P OqMAT(214)

C END SUIOTINE WFILED
END

SUBROUJTINE RA.ADFS(A9NDNTIER;;)
COMMONIFILES'(SA YEKOATAKPLOTKLISTKTE-RMK ; DATA IFOI/-l/
R:7WINO '(DATA

I~Ie~sEI GO TO Vr I4DITE V1

R7TUc'N
J 0 CALL FARr-AY(ANONP)

IF(IToNEeNT) GO TO 5

1"I FORAT('%CATA NOT IN @DATA# FILE e

RSTURN
C END SUBROUTINE REAOS

END
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SIJ8ROUTINF FAQ~AY(A,N,'JP)
CO"NON/FILES/I(SAVEKDATAKPLOT,KLXSTKTERM
DIM4ENSION~ A(NP)tND(l')

'I Ri*OD(KDATA1(2I (AMI)1±,9NP)
R--T UP N

1'1 FORrIAT(2141
Vt2 FORMAT(E2C!

C ENO SUBROUTINE FARRAY
ENI

SUBROUTINE TFR'4TX(Xi,X2,NR9NCITX)
.7. ClMMO'-/MA INI/NOIM

D!TMENSION X1(j),X2(1)
IV(!TXoEO.2) GO TO 2:1 JNCN,4IM

D~O I" JJ=I,,L

*1. X!((K)X2 (JJ)

2.1 KK=N;NC+i

DO 3- IzitNC

DO 3- J±,gNR
KK=KK-1ii JJZL+NR-J

3' X2 (JJ) yi (KIO

END
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SUBROUTINE MATLST(A9N~,NC9NTvKDEV)
DIMFNSION A(NRNC)
WRITE(I(EV,±~il NT
00 IT IulPNR

IC WPITEIKOEVoIC2) (A(IpJ)tJzlqNC)
Itl FORMAT (iHA3, 9-ATqIKV/)
I' 2 F CR MATtiXlPigGi 39 41

RZTUCN
C END SU9;.OUTINE 04ATLST

END

SUJBROUTINE NOSCRT(AvNP4TFRS)
CfNMON/DE IGN/NVCOMTSA MPtLFLRPI, LFLCGT 9LFLKF vLTE VAL 9LA SORT
DIMENSION AM!
NTE-R"SzIFIX(E.+3.'TSAMPOXNORM(N, A))
IF(NThERSeGT.3&#) NTEPI4S=3t
RET UP N

C END SUBROUTINE NDSCRT
END

SU9R3UTTNE RQWGTS(WoNC,NP)
DI4:rNSION WCi)

~i FORM4AT(" ENTER I AND OW(IvIl--(f'1 WHEN CO10DLETE) )*

IF(IeE~or ) RETIJPN
e ~IF(IoLE.NOI) GO TO 2-

Wr-ITE 1'%2
k 1"2 FORIMATC* rRROR IN ARRAY INO:X")

GO TOI

L25 WXITE 113
1",3 FOR'1AT(" ELEMENTS MUST BE NON-NEGATTVE")

GO TO 15
319 IF(NP) 3594r9,35
35 WRITE V~4
1 P4 FORMAT(" ELEM4ENTS MUST BE POSITIVE")

GO TO 15

j C EN D
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SU8RIUTrN=- DVCTOR(N,A,V)

DO I" I!',t429NPl
J=J+.

I MizA (I
Rl"TUrN

C Ft~c SUBROUTINE DVCTORF END

I S'J3'ROUTINE POLSS(AN9ITYP~vZMtZM2)

* ~COMMION/FILESII(SAVE, KOATAKPLOTKLIS1 ,ITERM

I DATA NTYP/6HDESIGN?HO.IIANO,5 HTRUTH,5H&EGPI,6IFILTER/
I. ND S=N DIM

NDIM4=NDIM~r CALL EIGE-NIND14,AZt±,Zt4±ANOIM~IqZMa,')
I (ITYPi*LT*4) GO TO 15i
CALL MAPOLE(NZMlZMI (NCI~i±I TSAM4P)

&. WrITE(KLIST#1J2) NTYP(ITYPE)
WTITE.(KTEFM,132) NTVP(ITYPE)

NUIM=NOS

NOIMX=NDTM*±
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SUBR~OUTINE PAvOLE(NvZR9ZXT)
DIMENSION ZRIJ),ZIM~
RTUI.4'T
00 1'1 I31,N

CEDSUBROUTINE MAPOLXyNNC

RTUPN

NSUBROUTINE FTMTXI~~NC

DIESINXlfY1IE RN
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SUBROUTINE FMMUL(X9Y9N~l9NC19NC2vZ)
DIMENSION XINR1,NC1),Y(NC1,NC21,pZ(NR±,NC2J
DOUBLE PRECISION TO00VII,~
DO 10 JS±,pNC2
TO= J o 0
DO 5 KzlqKCl

5 TDzT!)4X(i 9K) IY( KoJ)

RETURN
C ENO SUBROUTINE FH4UL

ENDt

SUBR~OUTINE FTt4ULtX,'fNkiiNC±.NC2,Z)
D147-'NSION X(Nq1,NCi),Y(NRjNC2),Z(NC1,NC2J
DOUBLE PRECISION TD
01 1I=19NCI
on 'l, J=jNC2
TD= 'a COL.
~30 5 K=zjRj

5 TDzTO. XK 91)"Y( KvJA

C ' NO SU3ROUTINE. FT4IULEPI

SuRROUTINE FMADDIXqYNR9NCZ)
0I'4TNSION XfI),YflbZ(1

01) 1" 1=1NE

R--TUcN

END
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SUBROUTINE ZPARTIA9NR,NCND)
a DIPIETNSION AMi

NE: =NC' NO
00 1lJ Ir-1,NR
DO If' JzI9NE,N0

* Ift A(J)=Po
RETURN

C END SUBROUTINE ZPART

SUJ'3OUTINF SU'31(ANRiN0)
GItIENSION AMj
NDi=ND.±
Nc = NP 'ND
00 V 121,NEO±i

RL JTURN
C END SUBROUTINE SUBI

s 
"D

SU13ROUTINE WPLOTF(VN)
* C0#MN/FILES/aSAVE,KDATAtaPL0TKLISTKTr-RM

DIMENSION V(N)

R ET U;N
1'. FORMAT(F2L.i )

C FND SUBROUTINE WPLOTF
END
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SUBROUTINE RP6OTF(V9NIERR)
CONMON/FILES/KSAV' KOATAtKPLOTKLISTKTERM
DIN ENSION V(N)
Rl-ADfKPLOTtltl ) (V(I)glI-"lN)

IF(EOFIKPLOT)) Sti.
5 IERR:l

RETURN

RETURN
if- I:'ORMAT (E2wolC )
C END SU3ROUTINE RPLOTF

SU13ROUTIN " STPLT(AtVtNSoNVNPoNVO)
OIENSION A(i),NS(i),NV(ljJV(,)
A (NS(i)I=V (NVO)
00 5 I=tNP

5AfNS(I1+1))=VtNV(I))
R.- T Ur N

C FHO SUBROUTINr STROLT
SN!)

SUBROUTINE PLOTLP(NMAIPSCISCLLPTERMtND-'VITITLE)
C 4 * * *, * 4, * 4 *F ,

Ir 0 N = NUM S- OP POINTS TO BE PLOTTED
C 4 4 = NUMBEE OF OUTPUTS TO BI PLOTTED
C 4 A = V-CTOR OF SAMPLE POINTS FOR PLOTTING I DIMENSION a N*M
C * ELEMENTS 1 TO N ARE THE INDEPENDENT VARSABLE
C 0 ELEMENTS (Nll TO 2*No (29 N i) TO 35 N, AND SO ON ARE
C * THE D!PENDET VARIABLES--EACH VARIABLE IS IN CONSECUTIVE
C 4,  STORAGE WITH CORRESPONDING SAMPLE POINTS FOR EACH
C 4 SEPARATED BY MULTIPLES OF N
C * IPSC : -i => SCALE ALL VARIABLES TOGETHER L PLOT)
C 4 1 . SCALE TOGETHER AND SEPARATELY (2 PLOTS)

C •  :+i : SCALE SE:PARAT.ELY 11 PLOT)
C 4 ISCL = 3 =2 PLOT OVER EXACT RANGE OF VARIABLE

C 0 a I 1- PLOT USING EVEN SCALING
C * LPTERM = f. : PLOT IS TO TERMINAL 5, CHARACTERS WICE)
C * : I PLOT IS TO LINE PRINTER (11" CHARACTERS WIOE)
C 0 ND V a DEVICE NUMBER FOP PLOT OUTPUT
C * ITITLE = VECTOR(DXMENSICNED 5) WITH 5' CHARACTER TITLE

DINENSION YSCAL(6,,YNTN(6),IBLNK(e),YPRii(),A(-,)
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INTEGER OUT(131),SYIIBOL(6IBLANKPLUSGRIUjITITLE(53
DATA B3LANKiPLUStCOLO~,SYM.BOL/IH ,1H4,Ii l,&HJ,1H2,1N3,dH..,1HEH6/

I. FOR'AT(H )
V..2 FORMtATIM1vtlX95A1ij/)

10 FORMATqIH 9FII.296X,±eIAl)
12 PFnR'AT(±1Hm SCALE 9AIIX911Fll.'.) -

I PA PS R 5 4(1eLPT R M)

RISPAC=FLOAT(ISPAC)
TIRPACz ISPAC'l
IORTlz1PAPER+l
RMIN=A (N4ll
R MA X=R fIXN

t.25 00 41 ISCINM
MIISC#N,1

VYL()

M~zN* (ISC+l)

IFIAJloLT:YL GO TO 310

IF(A(J3.GT*YH) zAJ
GO TO 4"

3~ YLzA(J)
S CONTINUE

I F( YL 9LT* Rm 1 N) RtMIIN= YL
IF(YH*GT*RMAXI RMAX=YH
IF(IPSCoGE.3 CALL VARSCL(YL ,yHYSCAL (ISC),;ZISPACISCL)

41 YMIN(ISCI=YL
IMtPSCoLEsM)ALL VA,.SCL(RMINR'IAXSCAL ,RISPACtiISCL)
iC z 2-1A BS UPS C)
00 4.5 IXzjISPAC

45 OUT(!X)=LANK(
00 1c. ICO=1,IC
W'RITa(iNtEV,21 (ITXTLE(I3,I=±,5)
00 6: 11i,N
XVQ:A(I)ii I 1MO(Iti63.EQeu) GO TO 458
GRXO=BLANK
GO TO W6

45b GRID:C0LON
46( 00 461 IX=2,ISPAC,2
461 OUT(IXX)GRIO

11 03 46 IXzIISPAC,1'7
46 OUTlIX)zPLUS

DO 55 J=1,M
IL.!. J*N
IM(PSC) 468,47,49

47 IPSCTzIPSt.ICC
IF(IPSCT*EQ@2) GO TO 49

48 JP*IFIXt(A(ILI-RtIIN)/SCALb+i
GO TO 5"
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4g J021FIX((A(IL)wYpmiNEJ))/YSCAL(J))*j
56~ 0UT(JP~zSYMBOL(J)
55 I'SLNK(J)=JP

WQITE(N!?EV,!) XPR,(oUT(1X)qIXvj9ISPAC)
DO 59 Jaj,14
I TE 1P--IBLN K (J)

59 OUT4ITE#4P)zBLANK
61 CONTINUE

* IF(IPSC) e8,67,?2
67 !VIIPSCT*EQo2) GO TO 72
61 VOR1)RM1IN

00 7.1 Im1,IPAPER
7 VPR(1+1jrzVPR(I)+l~",oSCAL

WRITE(NDEV912) BLANK,(YPdRtI)9IzivIPrTi)
G3 TO lo~

72 DI~ 7F. ISC=Im

00 74 IzitIPAPER

76 Wr-ITE(NDEV.12) SYMBOL Irsci, t(rxI),PIX2191PRTI)

C VO SUBROUTINE PLOTLP

SU-3iOUTINE VARSCL(V1IN,)(NAXSCALERSPACE,71SCL)
IF(XMAX#EQ*XIIN) XMIN=e9*XMlIN.±'.
SC ALE= XM W- XMIN
IFlISCL*EW) GO TO 25
EYP=IFIX(1GC.+ALOGIC (SCALE) )-aL..';
FACTO~zlfer ( .'±-EXP)
XrIINTzXMIN*FACTOR
X'AXTXMAX*FACTOR
IFlXIIAXT9Giof.) XMAXTzXMAXT+*9

AIF(Xt1INr.LEs~e) XI~XITe
XI4INT=AINT(XIINT)
ISCALXAXT.XINT
IF(MO!)(ISCALv5I .NE.'t) ISCAL=ISCAL+5-HOOCISCAL,S)
FACTO~u21V .*(EXP-2.)
XIIN=XtINT*FACTOR
SCALrzFACTOR*FLOATIISCAL)

25 SCALEzSCALE/R SPACE
RE T URN

C END SUBROUTINE VARSCL
END
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Appendix E

CGTPIF Segmentation Job Control

The following listing shows the job control com-

mands and segmentation directives used in obtaining a

segmented object file suitable for interactive execution

on the CDC CYBER computer system. The job employs three

object files: "L" "S", and "A". The routines on each of

these files are (see the program description and listing

of Appendices A and D, respectively),

"L": 'MAIN' and all optional routines ('MAIN' through
' TBLUPI '

"S": 'CGTPIF SUBS' ('CGTXQ' through 'VARSCL')
"A": 'LIBRARY'

Object files L and S are loaded into memory in order of

MAIN then CGTPIF SUBS. The "NOGO" command then completes

the load from LIBRARY and system routines in order, but

does not initiate execution. Next, the segmentation

directives are executed (segmentation directives appear

between the pair of "*EOR" lines). When segmentation is

complete, the resulting object file is cataloged.

In this listing, the names given the various object

files ("L", "S", "A") are arbitrary, and the "ATTACH"

commands may occur in any order. The file name ("lfn")

given in the "LIBRARY, ifn" command must correspond to the
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~1

name used in attaching the object file of 'LIBRARY'

routines ("A" in this case). The name given to the seg-

mented object file is arbitrary ("CGTPIF" in this case)

but must be consistent in the "REQUEST", "SEGLOAD", and

ji "CATALOG" commands. The segmentation directives should

not be modified in any way.

dAs done in this case, it is convenient to maintain

distinct object files for each of the three sets of

routines. Thus both 'CGTPIF SUBS' and 'LIBRARY' remain

invariant in object and LIBRARY object files, respectively.

The routine 'MAIN' and any desired user-provided optional

routines may then be developed as an independent set, and

compiled to obtain the needed object file. Descriptions of

'MAIN' and optional routines are given in the "Programmr's

Guide" (Appendix A).
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*~ IRF. D7 9047 7, FLOYD
j MAP. FULL.

ATTACH, L, SEa4 EXT, CY1O0.
ATTACH. S. FLOYDL1. CY-lO.
ATTACH, A, FLOYDLI, CY-1.
LIBRARY, A.
REQUEST. CGTPIF. *PF.
SEGLOAD(B-CGTPIF)
LOAD(L, s)
NOGO.
CATALOG. CGTPIF,TdiESIS. CYU100. RP-i ao. Pd-±U~F.
*EOR
SETUP INCLUDE DSCRT
SREGPI INCLUDE~ RQwGTS, MLIAEQ, FACTR(J
FLTRK INCLUDE RQbqGT5, K.FLTR, MLINEQ, FACTOR, IL4TEG
STRTH INCLUDE DSCRTT. INTEG
SOSN. INCLUDE QDSCRT
CEVAL IAJCLUDE PLOTLP, VARISCL, RPLOTF, 4JPLOTF, STRPLT
FEVAL INCLUDE PLOTLP, VAk(SCL, RPLOTF, iJPLurF,*STRtPLT, DACOV
Bi TREE SETUP-(SVSN. SC-IV, STRTli)

B2 TREE PIATX

B13 TREE SREGPI
B4 TR~EE SCUT
B35 TREE CEVAL

Bij TREE FLTRK
B37 TREE FEVAL

A TREE CGTXQ-(Bl,B2,B3,B4135,B6,B7)
ROOT TREE .AIN-A

*GLOBAL A4AIN1l.A-AIl-2, INOU, DESIGN, FILES. sysywrx, ZITXl, zT.X2,
*NUIAD, LQCD, DSc.HTX, NDIAC, LOCc, CL1J4TX, NDI.1r, LOCT, TRU.4TX, LCN'rRL. CONTI-tL,

*LREGPI, CREGPID LCGT, CCGT, LKF, CKF

*EOR 
EN

*ILOF
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